
Hyung Mo Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/454715/publications.pdf Version: 2024-02-01

HYUNG MO LEONG

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011, 11, 2472-2477.	9.1	1,547
2	Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano, 2014, 8, 7451-7457.	14.6	660
3	Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy and Environmental Science, 2012, 5, 9889.	30.8	159
4	Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO ₂ nanoparticles as an anode material for sodium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5182-5186.	10.3	119
5	Heavy metal removal applications using adsorptive membranes. Nano Convergence, 2020, 7, 36.	12.1	114
6	Unveiling Electrode–Electrolyte Design-Based NO Reduction for NH ₃ Synthesis. ACS Energy Letters, 2020, 5, 3647-3656.	17.4	97
7	Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life. Energy and Environmental Science, 2015, 8, 188-194.	30.8	90
8	Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes. RSC Advances, 2012, 2, 4311.	3.6	73
9	Metal–organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction. Electrochimica Acta, 2019, 306, 28-34.	5.2	65
10	Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7914-7919.	7.1	38
11	Atomicâ€Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide. Advanced Energy Materials, 2020, 10, 1903423.	19.5	32
12	Protective carbon-coated silicon nanoparticles with graphene buffer layers for high performance anodes in lithium-ion batteries. Applied Surface Science, 2019, 467-468, 926-931.	6.1	30
13	A metal–organic framework as a chemical guide to control hydrogen desorption pathways of ammonia borane. Nanoscale, 2014, 6, 6526-6530.	5.6	25
14	Improving CO ₂ Electrochemical Reduction to CO Using Space Confinement between Gold or Silver Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 1896-1902.	4.6	23
15	Design of less than 1Ânm Scale Spaces on SnO ₂ Nanoparticles for Highâ€Performance Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2022, 32, 2107349.	14.9	23
16	Hierarchical Si hydrogel architecture with conductive polyaniline channels on sulfonated-graphene for high-performance Li ion battery anodes having a robust cycle life. Journal of Materials Chemistry A, 2015, 3, 10238-10242.	10.3	22
17	Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability. Advanced Functional Materials, 2018, 28, 1803695.	14.9	20
18	Fabrication and characterization of zeolitic imidazolate framework-embedded cellulose acetate membranes for osmotically driven membrane process. Scientific Reports, 2019, 9, 5779.	3.3	13

HYUNG MO JEONG

#	Article	IF	CITATIONS
19	Thermoelectric Transport Properties of n-Type Sb-doped (Hf,Zr,Ti)NiSn Half-Heusler Alloys Prepared by Temperature-Regulated Melt Spinning and Spark Plasma Sintering. Applied Sciences (Switzerland), 2020, 10, 4963.	2.5	13
20	Porous polymer thin film encapsulated sulfur nanoparticles on graphene via partial evaporation for high-performance lithium–sulfur batteries. Applied Surface Science, 2021, 547, 149199.	6.1	13
21	Generic Strategy to Synthesize Highâ€īap Density Anode and Cathode Structures with Stratified Graphene Pliable Pockets via Monomeric Polymerization and Evaporation, and Their Utilization to Enable Ultrahigh Performance in Hybrid Energy Storages. Small, 2020, 16, 2001756.	10.0	11
22	Efficient Lithium Growth Control from Ordered Nitrogenâ€Chelated Lithiumâ€lon for High Performance Lithium Metal Batteries. Advanced Science, 2021, 8, 2002144.	11.2	9
23	Cutting-Processed Single-Wall Carbon Nanotubes with Additional Edge Sites for Supercapacitor Electrodes. Nanomaterials, 2018, 8, 464.	4.1	8
24	Electrochemically Li-intercalated TiO2 nanoparticles for High performance photocatalytic production of hydrogen. Catalysis Today, 2021, 359, 23-27.	4.4	8
25	Compensating the impurities on the Cu surface by MOFs for enhanced hydrocarbon production in the electrochemical reduction of carbon dioxide. Journal of Energy Chemistry, 2022, 66, 68-73.	12.9	7
26	Effect of Flash Light Sintering on Silver Nanowire Electrode Networks. Materials, 2020, 13, 404.	2.9	6
27	Facile and accelerated production of RuO2 monolayers via a dual-step intercalation process. Inorganic Chemistry Frontiers, 2020, 7, 1445-1450.	6.0	5
28	Ultrasonic assisted exfoliation for efficient production of RuO2 monolayer nanosheets. Inorganic Chemistry Frontiers, 0, , .	6.0	5
29	Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage. Journal of Materials Chemistry A, 2022, 10, 7668-7676.	10.3	5
30	Charge Transport Behavior of Al-Doped ZnO Incorporated with Reduced Graphene Oxide Nanocomposite Thin Film. Applied Sciences (Switzerland), 2020, 10, 7703.	2.5	1
31	Origination of forced particle-void networks for superior electron and mass transfer in binder-free supercapacitors. Scripta Materialia, 2022, 208, 114317.	5.2	1
32	Nano onductive Additive with Low Interfacial Energy Confining the Movement of Lithium Polysulfide Solution Enables Stable Reaction of Sulfur Electrode in Lithium‧ulfur Batteries. Batteries and Supercaps, 2022, 5, .	4.7	0