
Günther Weindl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4546992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Review of Anti-Infective Therapy, 2021, 19, 495-517.	4.4	10
2	Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19-2.5. International Journal of Molecular Sciences, 2021, 22, 1465.	4.1	8
3	Further hit optimization of 6-(trifluoromethyl)pyrimidin-2-amine based TLR8 modulators: Synthesis, biological evaluation and structure–activity relationships. European Journal of Medicinal Chemistry, 2021, 225, 113809.	5.5	2
4	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 6	522 Td (edition 1,430
5	Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handbook of Experimental Pharmacology, 2021, 265, 219-233.	1.8	2
6	The novel small-molecule antagonist MMG-11 preferentially inhibits TLR2/1 signaling. Biochemical Pharmacology, 2020, 171, 113687.	4.4	21
7	Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells. Autophagy, 2020, 16, 1380-1395.	9.1	25
8	TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research. Archives of Toxicology, 2020, 94, 2423-2434.	4.2	10
9	Lysosomotropic drugs enhance pro-inflammatory responses to IL- $1\hat{l}^2$ in macrophages by inhibiting internalization of the IL-1 receptor. Biochemical Pharmacology, 2020, 175, 113864.	4.4	14
10	Identification and validation of a novel dual small-molecule TLR2/8 antagonist. Biochemical Pharmacology, 2020, 177, 113957.	4.4	5
11	Biological Characterization, Mechanistic Investigation and Structureâ€Activity Relationships of Chemically Stable TLR2 Antagonists. ChemMedChem, 2020, 15, 1364-1371.	3.2	8
12	Development of Antimicrobial Peptides Based on Limulus Anti-Lipopolysaccharide Factor (LALF). , 2019, , 683-706.		0
13	Identification and characterization of a novel chemotype for human TLR8 inhibitors. European Journal of Medicinal Chemistry, 2019, 179, 744-752.	5.5	10
14	Intracellular Lipopolysaccharide Sensing as a Potential Therapeutic Target for Sepsis. Trends in Pharmacological Sciences, 2019, 40, 187-197.	8.7	88
15	LPS-neutralizing peptides reduce outer membrane vesicle-induced inflammatory responses. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1503-1513.	2.4	31
16	Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs). Advances in Experimental Medicine and Biology, 2019, 1117, 111-129.	1.6	8
17	Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening. Biochemical Pharmacology, 2018, 154, 148-160.	4.4	20
18	Characterization of reconstructed human skin containing Langerhans cells to monitor molecular	2.4	20

Characterization of reconstructed human skin containing Langerr events in skin sensitization. Toxicology in Vitro, 2018, 46, 77-85.

 $G\tilde{A}^{1}\!\!\!\!/_{4}$ nther Weindl

#	Article	IF	CITATIONS
19	Glucocorticoids and Toll-like receptor 2 cooperatively induce acute-phase serum amyloid A. Pharmacological Research, 2018, 128, 145-152.	7.1	14
20	Antimicrobial endotoxinâ€neutralizing peptides promote keratinocyte migration <i>via</i> P2X7 receptor activation and accelerate wound healing <i>in vivo</i> . British Journal of Pharmacology, 2018, 175, 3581-3593.	5.4	26
21	Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Frontiers in Pharmacology, 2018, 9, 281.	3.5	307
22	Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5. Frontiers in Immunology, 2018, 9, 1704.	4.8	48
23	Biotransformation of 2,4-toluenediamine in human skin and reconstructed tissues. Archives of Toxicology, 2017, 91, 3307-3316.	4.2	4
24	Cell type-specific regulatory effects of glucocorticoids on cutaneous TLR2 expression and signalling. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 201-208.	2.5	10
25	Recognition of Propionibacterium acnes by human TLR2 heterodimers. International Journal of Medical Microbiology, 2017, 307, 108-112.	3.6	43
26	Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochemical Pharmacology, 2017, 140, 64-72.	4.4	47
27	Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Scientific Reports, 2016, 6, 31577.	3.3	59
28	Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. Journal of Dermatological Science, 2016, 82, 9-17.	1.9	18
29	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
30	Acute myeloid leukaemia-derived Langerhans-like cells enhance Th1 polarization upon TLR2 engagement. Pharmacological Research, 2016, 105, 44-53.	7.1	23
31	Regulation of Dendritic Cell Function in Inflammation. Journal of Immunology Research, 2015, 2015, 1-15.	2.2	47
32	IL-4 abrogates T _H 17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2163-2168.	7.1	151
33	Inflammatory conditions distinctively alter immunological functions of <scp>L</scp> angerhansâ€like cells and dendritic cells <i><scp>i</scp>n vitro</i> . Immunology, 2015, 144, 218-230.	4.4	25
34	Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 625-634.	4.3	30
35	Increased cutaneous absorption reflects impaired barrier function of reconstructed skin models mimicking keratinisation disorders. Experimental Dermatology, 2014, 23, 286-288.	2.9	14
36	Improving Topical Non-Melanoma Skin Cancer Treatment: In vitro Efficacy of a Novel Guanosine-Analog Phosphonate. Skin Pharmacology and Physiology, 2014, 27, 173-173.	2.5	11

 $G\tilde{A}^{1}\!\!\!\!/_{4}$ nther Weindl

#	Article	IF	CITATIONS
37	Coreâ€multishell nanotransporters enhance skin penetration of the cellâ€penetrating peptide low molecular weight protamine. Polymers for Advanced Technologies, 2014, 25, 1337-1341.	3.2	3
38	Chloroquine Promotes IL-17 Production by CD4+ T Cells via p38-Dependent IL-23 Release by Monocyte-Derived Langerhans-like Cells. Journal of Immunology, 2014, 193, 6135-6143.	0.8	64
39	TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 484-494.	2.4	31
40	Cationic membraneâ€active peptides – anticancer and antifungal activity as well as penetration into human skin. Experimental Dermatology, 2014, 23, 326-331.	2.9	78
41	Esterase activity in excised and reconstructed human skin – Biotransformation of prednicarbate and the model dye fluorescein diacetate. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 374-385.	4.3	52
42	Host Defence Against Candida albicans and the Role of Pattern-recognition Receptors. Acta Dermato-Venereologica, 2012, 92, 291-298.	1.3	29
43	Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells. PLoS ONE, 2012, 7, e50518.	2.5	29
44	Interaction of the mucosal barrier with accessory immune cells during fungal infection. International Journal of Medical Microbiology, 2011, 301, 431-435.	3.6	18
45	Evaluation of Anti-inflammatory and Atrophogenic Effects of Glucocorticoids on Reconstructed Human Skin. ATLA Alternatives To Laboratory Animals, 2011, 39, 173-187.	1.0	30
46	3D-Wound healing model: Influence of morphine and solid lipid nanoparticles. Journal of Biotechnology, 2010, 148, 24-30.	3.8	110
47	The <i>Candida albicans</i> cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast, 2010, 27, 611-624.	1.7	34
48	Epithelial Cells and Innate Antifungal Defense. Journal of Dental Research, 2010, 89, 666-675.	5.2	66
49	Influences of opioids and nanoparticles on in vitro wound healing models. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 34-42.	4.3	74
50	Susceptibility testing of amorolfine, bifonazole and ciclopiroxolamine againstTrichophyton rubrumin anin vitromodel of dermatophyte nail infection. Medical Mycology, 2009, 47, 753-758.	0.7	41
51	Models of Oral and Vaginal Candidiasis Based on In Vitro Reconstituted Human Epithelia for the Study of Host-Pathogen Interactions. Methods in Molecular Biology, 2009, 470, 327-345.	0.9	17
52	Introduction: Host Responses. Methods in Molecular Biology, 2009, 470, 291-292.	0.9	0
53	Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology (United Kingdom), 2008, 154, 3266-3280.	1.8	218
54	The Early Transcriptional Response of Human Granulocytes to Infection with Candida albicans Is Not Essential for Killing but Reflects Cellular Communications. Infection and Immunity, 2007, 75, 1493-1501.	2.2	33

 $G\tilde{A}^{1}\!\!\!\!/_{4}$ nther Weindl

#	Article	IF	CITATIONS
55	Crosstalk between Keratinocytes and Adaptive Immune Cells in an lκBα Protein-Mediated Inflammatory Disease of the Skin. Immunity, 2007, 27, 296-307.	14.3	124
56	Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. Journal of Clinical Investigation, 2007, 117, 3664-72.	8.2	186
57	Receptor-Selective Retinoids for Psoriasis. American Journal of Clinical Dermatology, 2006, 7, 85-97.	6.7	12
58	Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nature Protocols, 2006, 1, 2767-2773.	12.0	94
59	In vivo Porphyrin Production by P. acnes in Untreated Acne Patients and its Modulation by Acne Treatment. Acta Dermato-Venereologica, 2006, 86, 316-319.	1.3	58
60	Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clinical Interventions in Aging, 2006, 1, 327-348.	2.9	349
61	Stroma-Mediated Dysregulation of Myelopoiesis in Mice Lacking lκBα. Immunity, 2005, 22, 479-491.	14.3	97
62	Peroxisome Proliferator-Activated Receptors and their Ligands. Drugs, 2005, 65, 1919-1934.	10.9	21
63	Induction of Nuclear Factor–κB and câ€Jun/Activator Protein–1 via Tollâ€Like Receptor 2 in Macrophages by Antimycoticâ€TreatedCandida albicans. Journal of Infectious Diseases, 2004, 190, 1318-1326.	4.0	41
64	Toll-like receptors as key mediators in innate antifungal immunity. Medical Mycology, 2004, 42, 485-498.	0.7	202
65	Hyaluronic Acid in the Treatment and Prevention of Skin Diseases: Molecular Biological, Pharmaceutical and Clinical Aspects. Skin Pharmacology and Physiology, 2004, 17, 207-213.	2.5	158