Günther Weindl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4546992/publications.pdf

Version: 2024-02-01

65 9,559 30 papers citations h-inde

30 63
h-index g-index

67 67 docs citations

67 times ranked 19377 citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 7	02 Td (editior 1,430
3	Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clinical Interventions in Aging, 2006, 1, 327-348.	2.9	349
4	Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Frontiers in Pharmacology, 2018, 9, 281.	3.5	307
5	Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology (United Kingdom), 2008, 154, 3266-3280.	1.8	218
6	Toll-like receptors as key mediators in innate antifungal immunity. Medical Mycology, 2004, 42, 485-498.	0.7	202
7	Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. Journal of Clinical Investigation, 2007, 117, 3664-72.	8.2	186
8	Hyaluronic Acid in the Treatment and Prevention of Skin Diseases: Molecular Biological, Pharmaceutical and Clinical Aspects. Skin Pharmacology and Physiology, 2004, 17, 207-213.	2.5	158
9	IL-4 abrogates T $<$ sub>H $<$ /sub> 17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2163-2168.	7.1	151
10	Crosstalk between Keratinocytes and Adaptive Immune Cells in an IκBα Protein-Mediated Inflammatory Disease of the Skin. Immunity, 2007, 27, 296-307.	14.3	124
11	3D-Wound healing model: Influence of morphine and solid lipid nanoparticles. Journal of Biotechnology, 2010, 148, 24-30.	3.8	110
12	Stroma-Mediated Dysregulation of Myelopoiesis in Mice Lacking lîºBα. Immunity, 2005, 22, 479-491.	14.3	97
13	Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nature Protocols, 2006, 1, 2767-2773.	12.0	94
14	Intracellular Lipopolysaccharide Sensing as a Potential Therapeutic Target for Sepsis. Trends in Pharmacological Sciences, 2019, 40, 187-197.	8.7	88
15	Cationic membraneâ€active peptides – anticancer and antifungal activity as well as penetration into human skin. Experimental Dermatology, 2014, 23, 326-331.	2.9	78
16	Influences of opioids and nanoparticles on in vitro wound healing models. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 34-42.	4.3	74
17	Epithelial Cells and Innate Antifungal Defense. Journal of Dental Research, 2010, 89, 666-675.	5.2	66
18	Chloroquine Promotes IL-17 Production by CD4+ T Cells via p38-Dependent IL-23 Release by Monocyte-Derived Langerhans-like Cells. Journal of Immunology, 2014, 193, 6135-6143.	0.8	64

#	Article	IF	Citations
19	Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Scientific Reports, 2016, 6, 31577.	3.3	59
20	In vivo Porphyrin Production by P. acnes in Untreated Acne Patients and its Modulation by Acne Treatment. Acta Dermato-Venereologica, 2006, 86, 316-319.	1.3	58
21	Esterase activity in excised and reconstructed human skin $\hat{a}\in$ Biotransformation of prednicarbate and the model dye fluorescein diacetate. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 374-385.	4.3	52
22	Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5. Frontiers in Immunology, 2018, 9, 1704.	4.8	48
23	Regulation of Dendritic Cell Function in Inflammation. Journal of Immunology Research, 2015, 2015, 1-15.	2.2	47
24	Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochemical Pharmacology, 2017, 140, 64-72.	4.4	47
25	Recognition of Propionibacterium acnes by human TLR2 heterodimers. International Journal of Medical Microbiology, 2017, 307, 108-112.	3.6	43
26	Induction of Nuclear Factorâ€"κB and câ€Jun/Activator Proteinâ€"1 via Tollâ€Like Receptor 2 in Macrophages by Antimycoticâ€TreatedCandida albicans. Journal of Infectious Diseases, 2004, 190, 1318-1326.	4.0	41
27	Susceptibility testing of amorolfine, bifonazole and ciclopiroxolamine againstTrichophyton rubrumin anin vitromodel of dermatophyte nail infection. Medical Mycology, 2009, 47, 753-758.	0.7	41
28	The <i>Candida albicans</i> cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast, 2010, 27, 611-624.	1.7	34
29	The Early Transcriptional Response of Human Granulocytes to Infection with Candida albicans Is Not Essential for Killing but Reflects Cellular Communications. Infection and Immunity, 2007, 75, 1493-1501.	2.2	33
30	TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 484-494.	2.4	31
31	LPS-neutralizing peptides reduce outer membrane vesicle-induced inflammatory responses. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1503-1513.	2.4	31
32	Evaluation of Anti-inflammatory and Atrophogenic Effects of Glucocorticoids on Reconstructed Human Skin. ATLA Alternatives To Laboratory Animals, 2011, 39, 173-187.	1.0	30
33	Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 625-634.	4.3	30
34	Host Defence Against Candida albicans and the Role of Pattern-recognition Receptors. Acta Dermato-Venereologica, 2012, 92, 291-298.	1.3	29
35	Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells. PLoS ONE, 2012, 7, e50518.	2.5	29
36	Antimicrobial endotoxinâ€neutralizing peptides promote keratinocyte migration ⟨i⟩via⟨ i⟩ P2X7 receptor activation and accelerate wound healing ⟨i⟩in vivo⟨ i⟩. British Journal of Pharmacology, 2018, 175, 3581-3593.	5.4	26

#	Article	IF	Citations
37	Inflammatory conditions distinctively alter immunological functions of <scp>L</scp> angerhansâ€like cells and dendritic cells <i><scp>i</scp>n vitro</i> . Immunology, 2015, 144, 218-230.	4.4	25
38	Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells. Autophagy, 2020, 16, 1380-1395.	9.1	25
39	Acute myeloid leukaemia-derived Langerhans-like cells enhance Th1 polarization upon TLR2 engagement. Pharmacological Research, 2016, 105, 44-53.	7.1	23
40	Peroxisome Proliferator-Activated Receptors and their Ligands. Drugs, 2005, 65, 1919-1934.	10.9	21
41	The novel small-molecule antagonist MMC-11 preferentially inhibits TLR2/1 signaling. Biochemical Pharmacology, 2020, 171, 113687.	4.4	21
42	Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening. Biochemical Pharmacology, 2018, 154, 148-160.	4.4	20
43	Characterization of reconstructed human skin containing Langerhans cells to monitor molecular events in skin sensitization. Toxicology in Vitro, 2018, 46, 77-85.	2.4	20
44	Interaction of the mucosal barrier with accessory immune cells during fungal infection. International Journal of Medical Microbiology, 2011, 301, 431-435.	3.6	18
45	Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. Journal of Dermatological Science, 2016, 82, 9-17.	1.9	18
46	Models of Oral and Vaginal Candidiasis Based on In Vitro Reconstituted Human Epithelia for the Study of Host-Pathogen Interactions. Methods in Molecular Biology, 2009, 470, 327-345.	0.9	17
47	Increased cutaneous absorption reflects impaired barrier function of reconstructed skin models mimicking keratinisation disorders. Experimental Dermatology, 2014, 23, 286-288.	2.9	14
48	Glucocorticoids and Toll-like receptor 2 cooperatively induce acute-phase serum amyloid A. Pharmacological Research, 2018, 128, 145-152.	7.1	14
49	Lysosomotropic drugs enhance pro-inflammatory responses to IL- $1\hat{l}^2$ in macrophages by inhibiting internalization of the IL-1 receptor. Biochemical Pharmacology, 2020, 175, 113864.	4.4	14
50	Receptor-Selective Retinoids for Psoriasis. American Journal of Clinical Dermatology, 2006, 7, 85-97.	6.7	12
51	Improving Topical Non-Melanoma Skin Cancer Treatment: In vitro Efficacy of a Novel Guanosine-Analog Phosphonate. Skin Pharmacology and Physiology, 2014, 27, 173-173.	2.5	11
52	Cell type-specific regulatory effects of glucocorticoids on cutaneous TLR2 expression and signalling. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 201-208.	2.5	10
53	Identification and characterization of a novel chemotype for human TLR8 inhibitors. European Journal of Medicinal Chemistry, 2019, 179, 744-752.	5. 5	10
54	TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research. Archives of Toxicology, 2020, 94, 2423-2434.	4.2	10

#	Article	IF	CITATIONS
55	An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Review of Anti-Infective Therapy, 2021, 19, 495-517.	4.4	10
56	Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs). Advances in Experimental Medicine and Biology, 2019, 1117, 111-129.	1.6	8
57	Biological Characterization, Mechanistic Investigation and Structureâ€Activity Relationships of Chemically Stable TLR2 Antagonists. ChemMedChem, 2020, 15, 1364-1371.	3.2	8
58	Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19-2.5. International Journal of Molecular Sciences, 2021, 22, 1465.	4.1	8
59	Identification and validation of a novel dual small-molecule TLR2/8 antagonist. Biochemical Pharmacology, 2020, 177, 113957.	4.4	5
60	Biotransformation of 2,4-toluenediamine in human skin and reconstructed tissues. Archives of Toxicology, 2017, 91, 3307-3316.	4.2	4
61	Coreâ€multishell nanotransporters enhance skin penetration of the cellâ€penetrating peptide low molecular weight protamine. Polymers for Advanced Technologies, 2014, 25, 1337-1341.	3.2	3
62	Further hit optimization of 6-(trifluoromethyl)pyrimidin-2-amine based TLR8 modulators: Synthesis, biological evaluation and structure–activity relationships. European Journal of Medicinal Chemistry, 2021, 225, 113809.	5.5	2
63	Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handbook of Experimental Pharmacology, 2021, 265, 219-233.	1.8	2
64	Development of Antimicrobial Peptides Based on Limulus Anti-Lipopolysaccharide Factor (LALF)., 2019,, 683-706.		0
65	Introduction: Host Responses. Methods in Molecular Biology, 2009, 470, 291-292.	0.9	0