Surendra K Makineni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4546949/publications.pdf

Version: 2024-02-01

52 papers

2,181 citations

218592 26 h-index 233338 45 g-index

55 all docs 55 docs citations

55 times ranked 1132 citing authors

#	Article	IF	CITATIONS
1	A new class of high strength high temperature Cobalt based γâ€"γâ€2 Coâ€"Moâ€"Al alloys stabilized with Ta addition. Acta Materialia, 2015, 97, 29-40.	3.8	151
2	Synthesis of a new tungsten-free γ›γ′ cobalt-based superalloy by tuning alloying additions. Acta Materialia, 2015, 85, 85-94.	3.8	151
3	A new tungsten-free γ–γ' Co–Al–Mo–Nb-based superalloy. Scripta Materialia, 2015, 98, 36-39.	2.6	145
4	Atom probe tomography. Nature Reviews Methods Primers, 2021, 1, .	11.8	131
5	Unveiling the Re effect in Ni-based single crystal superalloys. Nature Communications, 2020, 11, 389.	5.8	101
6	On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Materialia, 2018, 155, 362-371.	3.8	89
7	On the effect of Re addition on microstructural evolution of a CoNi-based superalloy. Acta Materialia, 2019, 168, 37-51.	3.8	83
8	Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nature Materials, 2021, 20, 1629-1634.	13.3	83
9	On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition. Acta Materialia, 2019, 170, 205-217.	3.8	77
10	On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scripta Materialia, 2020, 175, 1-6.	2.6	75
11	On the grain boundary strengthening effect of boron in $\hat{I}^3/\hat{I}^3\hat{a}\in^2$ Cobalt-base superalloys. Acta Materialia, 2018, 145, 247-254.	3.8	73
12	Elemental site occupancy in the L12 A3B ordered intermetallic phase in Co-based superalloys and its influence on the microstructure. Acta Materialia, 2019, 163, 140-153.	3.8	65
13	Effect of Cr addition on î³â€"î³â€² cobalt-based Coâ€"Moâ€"Alâ€"Ta class of superalloys: a combined experimenta and computational study. Journal of Materials Science, 2017, 52, 11036-11047.	al 1.7	61
14	Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4099-4109.	1.1	58
15	Phase evolution and crystallography of precipitates during decomposition of new "tungsten-free― Co(Ni)–Mo–Al–Nb γ‑γ′ superalloys at elevated temperatures. Journal of Materials Science, 2016, 51, 7843-7860.	1.7	55
16	On the segregation of Re at dislocations in the \hat{I}^{3} phase of Ni-based single crystal superalloys. Materialia, 2018, 4, 109-114.	1.3	51
17	Design of high-strength and damage-resistant carbide-free fine bainitic steels for railway crossing applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 210-223.	2.6	51
18	Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys. Acta Materialia, 2016, 105, 438-448.	3.8	50

#	Article	IF	CITATIONS
19	Correlative Microscopyâ€"Novel Methods and Their Applications to Explore 3D Chemistry and Structure of Nanoscale Lattice Defects: A Case Study in Superalloys. Jom, 2018, 70, 1736-1743.	0.9	49
20	Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scripta Materialia, 2018, 157, 62-66.	2.6	48
21	On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy. Acta Materialia, 2020, 184, 86-99.	3.8	45
22	Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys. Scripta Materialia, 2018, 154, 159-162.	2.6	44
23	Synthesis and stabilization of a new phase regime in a Mo-Si-B based alloy by laser-based additive manufacturing. Acta Materialia, 2018, 151, 31-40.	3.8	42
24	Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating $\hat{l}_i \hat{a} \in \mathbb{R}^3$ precipitates on them. Scientific Reports, 2017, 7, 11154.	1.6	41
25	Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations. Journal of Materials Research, 2018, 33, 4018-4030.	1.2	35
26	Precipitation formation on â ⁴ 5 and â ⁴ 7 grain boundaries in 316L stainless steel and their roles on intergranular corrosion. Acta Materialia, 2021, 210, 116822.	3.8	30
27	(Al, Zn)3Zr dispersoids assisted η′ precipitation in anAl-Zn-Mg-Cu-Zr alloy. Materialia, 2020, 10, 100641.	1.3	28
28	Effect of interface dislocations on mass flow during high temperature and low stress creep of single crystal Ni-base superalloys. Scripta Materialia, 2021, 191, 23-28.	2.6	28
29	Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3047-3057.	1.1	26
30	The role of Ti addition on the evolution and stability of γ∫γ′ microstructure in a Co-30Ni-10Al-5Mo-2Ta alloy. Acta Materialia, 2021, 208, 116736.	3.8	25
31	Development of new γ′-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength. Materials Science & Degratering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139578.	2.6	24
32	On the effect of W addition on microstructural evolution and γ′ precipitate coarsening in a Co–30Ni–10Al–5Mo–2Ta–2Ti alloy. Materialia, 2020, 10, 100632.	1.3	23
33	Understanding creep of a single-crystalline Co-Al-W-Ta superalloy by studying the deformation mechanism, segregation tendency and stacking fault energy. Acta Materialia, 2021, 214, 117019.	3.8	23
34	Dynamic strain aging in the intermediate temperature regime of near- <mml:math altimg="si14.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> titanium alloy, IMI 834: Experimental and modeling. Acta Materialia, 2022, 222, 117436.	3.8	18
35	Effects of Mo on the mechanical behavior of $\hat{I}^3/\hat{I}^3\hat{E}^1$ -strengthened Co-Ti-based alloys. Acta Materialia, 2020, 197, 69-80.	3.8	16
36	On the compositional and structural redistribution during partial recrystallisation: a case of if -phase precipitation in a Mo-doped NiCoCr medium-entropy alloy. Scripta Materialia, 2021, 194, 113662.	2.6	11

#	Article	IF	CITATIONS
37	Low-Density, High-Temperature Co Base Superalloys. Annual Review of Materials Research, 2021, 51, 187-208.	4.3	11
38	Achieving lower mass density with high strength in Nb stabilised γ∫î³â€² Co–Al–Mo–Nb base superalloy by the replacement of Mo with V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139826.	2.6	7
39	Effect of Ru addition on γ/γ′ microstructural stability in a low-density CoNi based superalloy. Scripta Materialia, 2022, 208, 114318.	2.6	7
40	Calibration of Atom Probe Tomography Reconstructions Through Correlation with Electron Micrographs. Microscopy and Microanalysis, 2019, 25, 301-308.	0.2	6
41	Exploring the correlation between microscopic mechanisms and macroscopic behaviour in creep of a directionally solidified tungsten-free γ∫γ′ CoNi-base superalloy. Acta Materialia, 2022, 228, 117738.	3.8	6
42	Structural and magnetic properties of ultra-small scale eutectic CoFeZr alloys. Journal of Alloys and Compounds, 2015, 620, 442-450.	2.8	5
43	Role of Ti on growth, morphology and microtexture evolution of A15-based V3Ga superconductor by bronze technique. Materials and Design, 2016, 110, 404-413.	3.3	5
44	Two phase ferromagnetic composites in Co-Zr and Co-Zr-Fe systems containing anti-phase domain imparting very high strength. Materials Research Bulletin, 2018, 97, 61-70.	2.7	4
45	Role of Ti on Phase Evolution, Oxidation and Nitridation of Co–30Ni–10Al–8Cr–5Mo–2Nb–(0, 2 & am Physical Metallurgy and Materials Science, 2021, 52, 5004-5015.	np;) Tj ETQ 1.1	q1 1 0.784 4
46	Enhancement of high temperatureÂstrength of Al-Cu alloys by minor alloying and hot working process. Journal of Alloys and Compounds, 2022, 921, 166136.	2.8	4
47	Design of low mass density <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\hat{l}^3</mml:mi><mml:mo>/</mml:mo> CoNi-based superalloys with promising high-temperature mechanical properties. Physical Review Materials, 2021, 5, .</mml:mrow></mml:math>	kmml:msu	ug> <mml:m< td=""></mml:m<>
48	Microstructural engineering of medium entropy NiCo(CrAl) alloy for enhanced room and high-temperature mechanical properties. Materialia, 2022, 22, 101424.	1.3	3
49	An Overview on Co-Base Alloys for High Temperature Applications. , 2022, , 323-334.		2
50	Atomic Structure and Chemical Composition of Planar Fault Structures in Co-Base Superalloys. Minerals, Metals and Materials Series, 2020, , 920-928.	0.3	2
51	On the fabrication of atom probe tomography specimens of Al alloys at room temperature using focused ion beam milling with liquid Ga ion source. Microscopy Research and Technique, 2022, 85, 3040-3049.	1.2	1
52	Elemental Sub-Lattice Occupation and Microstructural Evolution in γ/γ′ Co–12Ti–4Mo–Cr Alloys. Microscopy and Microanalysis, 2021, , 1-5.	0.2	0