Jessica Ernakovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4546774/publications.pdf Version: 2024-02-01

		567281	888059
24	1,211	15	17
papers	citations	h-index	g-index
28	28	28	2395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microbiome assembly in thawing permafrost and its feedbacks to climate. Global Change Biology, 2022, 28, 5007-5026.	9.5	34
2	Altered microbial structure and function after thermokarst formation. Global Change Biology, 2021, 27, 823-835.	9.5	33
3	A combined microbial and ecosystem metric of carbon retention efficiency explains land cover-dependent soil microbial biodiversity–ecosystem function relationships. Biogeochemistry, 2021, 153, 1-15.	3.5	5
4	ls A Common Goal A False Hope in Convergence Research?: Opportunities and Challenges of International Convergence Research to Address Arctic Change. Earth's Future, 2021, 9, e2020EF001865.	6.3	4
5	The Transition From Stochastic to Deterministic Bacterial Community Assembly During Permafrost Thaw Succession. Frontiers in Microbiology, 2020, 11, 596589.	3.5	29
6	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. PLoS ONE, 2020, 15, e0233297.	2.5	20
7	Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: An interlab comparison across soils. Geoderma, 2020, 366, 114235.	5.1	36
8	Long-term effects of copper exposure to agricultural soil function and microbial community structure at a controlled and experimental field site. Environmental Pollution, 2020, 263, 114411.	7.5	18
9	Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data, 2020, 12, 1511-1524.	9.9	26
10	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. , 2020, 15, e0233297.		0
11	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. , 2020, 15, e0233297.		0
12	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. , 2020, 15, e0233297.		0
13	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. , 2020, 15, e0233297.		0
14	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. , 2020, 15, e0233297.		0
15	Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. , 2020, 15, e0233297.		0
16	The Microbiome Stress Project: Toward a Global Meta-Analysis of Environmental Stressors and Their Effects on Microbial Communities. Frontiers in Microbiology, 2018, 9, 3272.	3.5	126
17	Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost. Biogeochemistry, 2017, 134, 183-200.	3.5	22
18	Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 2016, 6, 950-953.	18.8	288

JESSICA ERNAKOVICH

#	Article	IF	CITATIONS
19	A panâ€Arctic synthesis of CH ₄ and CO ₂ production from anoxic soil incubations. Global Change Biology, 2015, 21, 2787-2803.	9.5	138
20	Chemical Indicators of Cryoturbation and Microbial Processing throughout an Alaskan Permafrost Soil Depth Profile. Soil Science Society of America Journal, 2015, 79, 783-793.	2.2	30
21	Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biology and Biochemistry, 2015, 87, 78-89.	8.8	32
22	Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 2014, 20, 3256-3269.	9.5	297
23	Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates. Soil Biology, 2010, , 245-258.	0.8	63
24	We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. Frontiers in Environmental Science, 0, 10, .	3.3	9