Gunnar Von Heijne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. Journal of Molecular Biology, 2001, 305, 567-580.	2.0	11,404
2	Tissue-based map of the human proteome. Science, 2015, 347, 1260419.	6.0	10,802
3	SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8, 785-786.	9.0	8,521
4	Improved Prediction of Signal Peptides: SignalP 3.0. Journal of Molecular Biology, 2004, 340, 783-795.	2.0	6,015
5	A new method for predicting signal sequence cleavage sites. Nucleic Acids Research, 1986, 14, 4683-4690.	6.5	4,858
6	Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology, 2000, 300, 1005-1016.	2.0	4,166
7	SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 2019, 37, 420-423.	9.4	3,317
8	Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2007, 2, 953-971.	5.5	2,940
9	Patterns of Amino Acids near Signal-Sequence Cleavage Sites. FEBS Journal, 1983, 133, 17-21.	0.2	2,297
10	Signal sequences. Journal of Molecular Biology, 1985, 184, 99-105.	2.0	2,249
11	ChloroP, a neural networkâ€based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 1999, 8, 978-984.	3.1	1,778
12	Membrane protein structure prediction. Journal of Molecular Biology, 1992, 225, 487-494.	2.0	1,619
13	Genomeâ€wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science, 1998, 7, 1029-1038.	3.1	1,329
14	Domain structure of mitochondrial and chloroplast targeting peptides. FEBS Journal, 1989, 180, 535-545.	0.2	1,101
15	Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering, Design and Selection, 2004, 17, 349-356.	1.0	1,089
16	The signal peptide. Journal of Membrane Biology, 1990, 115, 195-201.	1.0	1,024
17	Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Science, 2003, 12, 1652-1662.	3.1	1,016
18	Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature, 2005, 433, 377-381.	13.7	888

2

#	Article	IF	CITATIONS
19	SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 2022, 40, 1023-1025.	9.4	883
20	The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO Journal, 1986, 5, 3021-3027.	3.5	770
21	How signal sequences maintain cleavage specificity. Journal of Molecular Biology, 1984, 173, 243-251.	2.0	759
22	Topogenic signals in integral membrane proteins. FEBS Journal, 1988, 174, 671-678.	0.2	674
23	Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering, Design and Selection, 1990, 3, 433-442.	1.0	674
24	A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites. International Journal of Neural Systems, 1997, 08, 581-599.	3.2	645
25	Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 2007, 450, 1026-1030.	13.7	644
26	How proteins adapt to a membrane–water interface. Trends in Biochemical Sciences, 2000, 25, 429-434.	3.7	636
27	TopPred II: an improved software for membrane protein structure predictions. Bioinformatics, 1994, 10, 685-686.	1.8	627
28	Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance, 2019, 2, e201900429.	1.3	561
29	Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature, 1989, 341, 456-458.	13.7	558
30	Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Engineering, Design and Selection, 1999, 12, 3-9.	1.0	546
31	Global Topology Analysis of the Escherichia coli Inner Membrane Proteome. Science, 2005, 308, 1321-1323.	6.0	455
32	Transcending the impenetrable: How proteins come to terms with membranes. BBA - Biomembranes, 1988, 947, 307-333.	7.9	453
33	Membrane-protein topology. Nature Reviews Molecular Cell Biology, 2006, 7, 909-918.	16.1	450
34	Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction. Plant Cell, 2002, 14, 211-236.	3.1	439
35	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	2.4	367
36	YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO Journal, 2000, 19, 542-549.	3.5	357

#	Article	IF	CITATIONS
37	Trans-membrane Translocation of Proteins. The Direct Transfer Model. FEBS Journal, 1979, 97, 175-181.	0.2	352
38	Prediction of the human membrane proteome. Proteomics, 2010, 10, 1141-1149.	1.3	347
39	A conserved cleavage-site motif in chloroplast transit peptides. FEBS Letters, 1990, 261, 455-458.	1.3	345
40	Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biology, 2005, 7, 1224-1231.	4.6	333
41	Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature, 2012, 481, 525-529.	13.7	330
42	Proline kinks in transmembrane α-helices. Journal of Molecular Biology, 1991, 218, 499-503.	2.0	314
43	Cleavage-site motifs in mitochondrial targeting peptides. Protein Engineering, Design and Selection, 1990, 4, 33-37.	1.0	311
44	Sequence determinants of cytosolic N-terminal protein processing. FEBS Journal, 1986, 154, 193-196.	0.2	297
45	Mechanisms of Integral Membrane Protein Insertion and Folding. Journal of Molecular Biology, 2015, 427, 999-1022.	2.0	292
46	GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nature Protocols, 2008, 3, 784-798.	5.5	289
47	Prediction of membrane-protein topology from first principles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7177-7181.	3.3	288
48	Membrane Proteins: From Sequence to Structure. Annual Review of Biophysics and Biomolecular Structure, 1994, 23, 167-192.	18.3	287
49	The structure of signal peptides from bacterial lipoproteins. Protein Engineering, Design and Selection, 1989, 2, 531-534.	1.0	264
50	Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants. Journal of Biological Chemistry, 1999, 274, 34993-35004.	1.6	261
51	Predicting the topology of eukaryotic membrane proteins. FEBS Journal, 1993, 213, 1333-1340.	0.2	252
52	Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO Journal, 1999, 18, 2982-2990.	3.5	249
53	Species-specific variation in signal peptide design Implications for protein secretion in foreign hosts. FEBS Letters, 1989, 244, 439-446.	1.3	247
54	A receptor component of the chloroplast protein translocation machinery. Science, 1994, 266, 1989-1992.	6.0	234

#	Article	IF	CITATIONS
55	Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Reports, 2015, 12, 1533-1540.	2.9	234
56	Fine-tuning the topology of a polytopic membrane protein: Role of positively and negatively charged amino acids. Cell, 1990, 62, 1135-1141.	13.5	225
57	Membrane Protein Structure: Prediction versus Reality. Annual Review of Biochemistry, 2007, 76, 125-140.	5.0	220
58	High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13936-13941.	3.3	214
59	Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Letters, 2001, 507, 220-224.	1.3	210
60	The Dominant white, Dun and Smoky Color Variants in Chicken Are Associated With Insertion/Deletion Polymorphisms in the PMEL17 GeneSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY636124, AY636125, AY636126, AY636127, AY636128, AY636129 Genetics, 2004, 168, 1507-1518.	1.2	209
61	Interface connections of a transmembrane voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15059-15064.	3.3	208
62	Chloroplast transit peptides the perfect random coil?. FEBS Letters, 1991, 278, 1-3.	1.3	206
63	Signal peptidases in prokaryotes and eukaryotes - a new protease family. Trends in Biochemical Sciences, 1992, 17, 474-478.	3.7	195
64	Membrane topology of the <i>Drosophila</i> OR83b odorant receptor. FEBS Letters, 2007, 581, 5601-5604.	1.3	194
65	Reliability Measures for Membrane Protein Topology Prediction Algorithms. Journal of Molecular Biology, 2003, 327, 735-744.	2.0	190
66	Identification and evolution of dual-topology membrane proteins. Nature Structural and Molecular Biology, 2006, 13, 112-116.	3.6	189
67	On the Hydrophobic Nature of Signal Sequences. FEBS Journal, 1981, 116, 419-422.	0.2	185
68	Molecular Mechanism of Membrane Protein Integration into the Endoplasmic Reticulum. Cell, 1997, 89, 523-533.	13.5	185
69	Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2690-2695.	3.3	185
70	Structures of N-terminally acetylated proteins. FEBS Journal, 1985, 152, 523-527.	0.2	184
71	Protein Complexes of the Escherichia coli Cell Envelope*. Journal of Biological Chemistry, 2005, 280, 34409-34419.	1.6	183
72	BIOGENESIS OF INNER MEMBRANE PROTEINS INESCHERICHIA COLI. Annual Review of Microbiology, 2005, 59, 329-355.	2.9	177

#	Article	IF	CITATIONS
73	The membrane protein universe: what's out there and why bother?. Journal of Internal Medicine, 2007, 261, 543-557.	2.7	177
74	How Translocons Select Transmembrane Helices. Annual Review of Biophysics, 2008, 37, 23-42.	4.5	176
75	Topology of the Membrane-Associated Hepatitis C Virus Protein NS4B. Journal of Virology, 2003, 77, 5428-5438.	1.5	175
76	Net N-C charge imbalance may be important for signal sequence function in bacteria. Journal of Molecular Biology, 1986, 192, 287-290.	2.0	172
77	Membrane Insertion of a Potassium-Channel Voltage Sensor. Science, 2005, 307, 1427-1427.	6.0	171
78	Expression of an Olfactory Receptor inEscherichiacoli:Â Purification, Reconstitution, and Ligand Bindingâ€. Biochemistry, 1996, 35, 16077-16084.	1.2	169
79	Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Molecular Microbiology, 1997, 25, 53-64.	1.2	168
80	Prediction of organellar targeting signals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1541, 114-119.	1.9	168
81	Topological ?frustration? in multispanning E. coli inner membrane proteins. Cell, 1994, 77, 401-412.	13.5	166
82	RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nature Medicine, 2015, 21, 314-317.	15.2	166
83	A Nine-transmembrane Domain Topology for Presenilin 1. Journal of Biological Chemistry, 2005, 280, 35352-35360.	1.6	162
84	Membrane Proteins. The Amino Acid Composition of Membrane-Penetrating Segments. FEBS Journal, 1981, 120, 275-278.	0.2	161
85	A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nature Structural and Molecular Biology, 2012, 19, 1018-1022.	3.6	161
86	Chloroplast transit peptides from the green algaChlamydomonas reinhardtiishare features with both mitochondrial and higher plant chloroplast presequences. FEBS Letters, 1990, 260, 165-168.	1.3	160
87	Why mitochondria need a genome. FEBS Letters, 1986, 198, 1-4.	1.3	154
88	A Brief History of Protein Sorting Prediction. Protein Journal, 2019, 38, 200-216.	0.7	154
89	Assembly of a cytoplasmic membrane protein inEscherichia coliis dependent on the signal recognition particle. FEBS Letters, 1996, 399, 307-309.	1.3	151
90	A Study of the Membrane–Water Interface Region of Membrane Proteins. Journal of Molecular Biology, 2005, 346, 377-385.	2.0	140

#	Article	IF	CITATIONS
91	Towards a comparative anatomy of N-terminal topogenic protein sequences. Journal of Molecular Biology, 1986, 189, 239-242.	2.0	139
92	The Aromatic Residues Trp and Phe Have Different Effects on the Positioning of a Transmembrane Helix in the Microsomal Membrane. Biochemistry, 1999, 38, 9778-9782.	1.2	137
93	Topological Rules for Membrane Protein Assembly in Eukaryotic Cells. Journal of Biological Chemistry, 1997, 272, 6119-6127.	1.6	136
94	Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Science, 1997, 6, 808-815.	3.1	134
95	Proline-induced disruption of a transmembrane α-helix in its natural environment. Journal of Molecular Biology, 1998, 284, 1165-1175.	2.0	134
96	A Nascent Secretory Protein 5 Traverse the Ribosome/Endoplasmic Reticulum Translocase Complex as an Extended Chain. Journal of Biological Chemistry, 1996, 271, 6241-6244.	1.6	133
97	The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase Journal of Cell Biology, 1994, 126, 1127-1132.	2.3	132
98	Control of Membrane Protein Topology by a Single C-Terminal Residue. Science, 2010, 328, 1698-1700.	6.0	128
99	Global profiling of SRP interaction with nascent polypeptides. Nature, 2016, 536, 219-223.	13.7	125
100	Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. Journal of Cell Biology, 2003, 161, 715-725.	2.3	124
101	A global topology map of the Saccharomyces cerevisiae membrane proteome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11142-11147.	3.3	124
102	Prediction of N-terminal protein sorting signals. Current Opinion in Structural Biology, 1997, 7, 394-398.	2.6	122
103	Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology, 2005, 15, 378-386.	2.6	122
104	The machinery of membrane protein assembly. Current Opinion in Structural Biology, 2004, 14, 397-404.	2.6	121
105	Emulating Membrane Protein Evolution by Rational Design. Science, 2007, 315, 1282-1284.	6.0	116
106	Membrane Assembly of the Cannabinoid Receptor 1: Impact of a Long N-Terminal Tail. Molecular Pharmacology, 2003, 64, 570-577.	1.0	112
107	Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins: Structure, Function and Bioinformatics, 2005, 60, 606-616.	1.5	108
108	Membrane proteins: from sequence to structure. Protein Engineering, Design and Selection, 1990, 4, 109-112.	1.0	105

#	Article	IF	CITATIONS
109	Life and death of a signal peptide. Nature, 1998, 396, 111-113.	13.7	105
110	Membrane topology of the human seipin protein. FEBS Letters, 2006, 580, 2281-2284.	1.3	105
111	Protein targeting signals. Current Opinion in Cell Biology, 1990, 2, 604-608.	2.6	104
112	Forced Transmembrane Orientation of Hydrophilic Polypeptide Segments in Multispanning Membrane Proteins. Molecular Cell, 1998, 2, 495-503.	4.5	104
113	Arginine in Membranes: The Connection Between Molecular Dynamics Simulations and Translocon-Mediated Insertion Experiments. Journal of Membrane Biology, 2011, 239, 35-48.	1.0	104
114	In Silico Prediction of the Peroxisomal Proteome in Fungi, Plants and Animals. Journal of Molecular Biology, 2003, 330, 443-456.	2.0	103
115	Properties of N-terminal tails in G-protein coupled receptors: a statistical study. Protein Engineering, Design and Selection, 1995, 8, 693-698.	1.0	101
116	Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. Journal of Molecular Biology, 1998, 284, 1177-1183.	2.0	101
117	Recent advances in the understanding of membrane protein assembly and structure. Quarterly Reviews of Biophysics, 1999, 32, 285-307.	2.4	101
118	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. , 1998, 30, 49-60.		98
119	Cotranslational folding of spectrin domains via partially structured states. Nature Structural and Molecular Biology, 2017, 24, 221-225.	3.6	97
120	Turns in transmembrane helices: determination of the minimal length of a "helical hairpin―and derivation of a fine-grained turn propensity scale 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1999, 293, 807-814.	2.0	95
121	A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9751-9754.	3.3	93
122	A turn propensity scale for transmembrane helices. Journal of Molecular Biology, 1999, 288, 141-145.	2.0	92
123	Consensus predictions of membrane protein topology. FEBS Letters, 2000, 486, 267-269.	1.3	91
124	Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nature Communications, 2014, 5, 4863.	5.8	91
125	The â€~positive-inside rule' applies to thylakoid membrane proteins. FEBS Letters, 1991, 282, 41-46. 	1.3	90
126	Experimentally based topology models forE. coliinner membrane proteins. Protein Science, 2004, 13, 937-945.	3.1	90

#	Article	IF	CITATIONS
127	Translation rate modification by preferential codon usage: Intragenic position effects. Journal of Theoretical Biology, 1987, 124, 43-55.	0.8	87
128	Somatic Acquisition and Signaling of <emph type="ITAL">TGFBR1</emph> *6A in Cancer. JAMA - Journal of the American Medical Association, 2005, 294, 1634.	3.8	87
129	Membrane Topology Mapping of Vitamin K Epoxide Reductase by in Vitro Translation/Cotranslocation. Journal of Biological Chemistry, 2005, 280, 16410-16416.	1.6	87
130	Chapter 4 Structural and Thermodynamic Aspects of the Transfer of Proteins into and across Membranes. Current Topics in Membranes and Transport, 1985, , 151-179.	0.6	86
131	Membrane Topology of the 60-kDa Oxa1p Homologue fromEscherichia coli. Journal of Biological Chemistry, 1998, 273, 30415-30418.	1.6	86
132	Folding pathway of an Ig domain is conserved on and off the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11284-E11293.	3.3	86
133	<i>Saccharomyces cerevisiae</i> mitochondria lack a bacterialâ€ŧype Sec machinery. Protein Science, 1996, 5, 2651-2652.	3.1	85
134	Principles of membrane protein assembly and structure. Progress in Biophysics and Molecular Biology, 1996, 66, 113-139.	1.4	84
135	Membrane Insertion of Marginally Hydrophobic Transmembrane Helices Depends on Sequence Context. Journal of Molecular Biology, 2010, 396, 221-229.	2.0	82
136	The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling. ELife, 2017, 6, .	2.8	81
137	Disulfide Bond Formation and Cysteine Exclusion in Gram-positive Bacteria. Journal of Biological Chemistry, 2010, 285, 3300-3309.	1.6	80
138	Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biology, 2000, 1, 3.	3.0	79
139	Cotranslational folding of membrane proteins probed by arrest-peptide–mediated force measurements. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14640-14645.	3.3	79
140	Inefficient SRP Interaction with a Nascent Chain Triggers a mRNA Quality Control Pathway. Cell, 2014, 156, 146-157.	13.5	77
141	Insertion of short transmembrane helices by the Sec61 translocon. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11588-11593.	3.3	76
142	Defining a similarity threshold for a functional protein sequence pattern: The signal peptide cleavage site. , 1996, 24, 165-177.		75
143	Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein. Journal of Molecular Biology, 2016, 428, 1356-1364.	2.0	74
144	Alaâ€insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helixâ€helix interactions in integral membrane proteins. Protein Science, 1996, 5, 1339-1341.	3.1	71

#	Article	IF	CITATIONS
145	Determination of the Border between the Transmembrane and Cytoplasmic Domains of Human Integrin Subunits. Journal of Biological Chemistry, 1999, 274, 37030-37034.	1.6	71
146	Human neuropeptide Y signal peptide gain-of-function polymorphism is associated with increased body mass index: possible mode of function. Regulatory Peptides, 2005, 127, 45-53.	1.9	71
147	A 12-Residue-long Polyleucine Tail Is Sufficient to Anchor Synaptobrevin to the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 1996, 271, 7583-7586.	1.6	70
148	Disassembly of the divisome in <scp><i>E</i></scp> <i>scherichia coli</i> : evidence that <scp>FtsZ</scp> dissociates before compartmentalization. Molecular Microbiology, 2014, 92, 1-9.	1.2	70
149	Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nature Structural and Molecular Biology, 2015, 22, 145-149.	3.6	70
150	Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N _{in} –C _{out} and N _{out} –C _{in} transmembrane helices. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15702-15707.	3.3	69
151	Small protein domains fold inside the ribosome exit tunnel. FEBS Letters, 2016, 590, 655-660.	1.3	69
152	Trans-membrane Translocation of Proteins. A Detailed Physico-Chemical Analysis. FEBS Journal, 1980, 103, 431-438.	0.2	66
153	The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and rnitochondrially encoded proteins. FEBS Journal, 1992, 205, 1207-1215.	0.2	66
154	Glycosylation Efficiency of Asn-Xaa-Thr Sequons Depends Both on the Distance from the C Terminus and on the Presence of a Downstream Transmembrane Segment. Journal of Biological Chemistry, 2000, 275, 17338-17343.	1.6	66
155	Asn―and Aspâ€mediated interactions between transmembrane helices during transloconâ€mediated membrane protein assembly. EMBO Reports, 2006, 7, 1111-1116.	2.0	65
156	The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. ELife, 2018, 7, .	2.8	65
157	Positively charged amino acids placed next to a signal sequence block protein translocation more efficiently in Escherichia coli than in mammalian microsomes. Molecular Genetics and Genomics, 1993, 239, 251-256.	2.4	64
158	Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8263-8268.	3.3	64
159	Inhibition of Protein Translocation across the Endoplasmic Reticulum Membrane by Sterols. Journal of Biological Chemistry, 2001, 276, 41748-41754.	1.6	63
160	A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in asec-independent protein. FEBS Letters, 1992, 299, 243-246.	1.3	61
161	TheE. coliSRP: preferences of a targeting factor. FEBS Letters, 1997, 408, 1-4.	1.3	60
162	Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4127-4132.	3.3	60

#	Article	IF	CITATIONS
163	The Code for Directing Proteins for Translocation across ER Membrane: SRP Cotranslationally Recognizes Specific Features of a Signal Sequence. Journal of Molecular Biology, 2015, 427, 1191-1201.	2.0	60
164	Repositioning of Transmembrane α-Helices during Membrane Protein Folding. Journal of Molecular Biology, 2010, 397, 190-201.	2.0	59
165	Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9280-E9287.	3.3	59
166	Topology Models for 37 Saccharomyces cerevisiaeMembrane Proteins Based on C-terminal Reporter Fusions and Predictions. Journal of Biological Chemistry, 2003, 278, 10208-10213.	1.6	58
167	Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping. Biochemistry, 1993, 32, 8534-8539.	1.2	54
168	Breaking the camel's back: proline-induced turns in a model transmembrane helix. Journal of Molecular Biology, 1998, 284, 1185-1189.	2.0	54
169	Exploration of the Arrest Peptide Sequence Space Reveals Arrest-enhanced Variants. Journal of Biological Chemistry, 2015, 290, 10208-10215.	1.6	54
170	Directionality in protein translocation across membranes: the N-tail phenomenon. Trends in Cell Biology, 1995, 5, 380-383.	3.6	53
171	Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2002, 277, 23447-23452.	1.6	53
172	Sequence-based feature prediction and annotation of proteins. Genome Biology, 2009, 10, 206.	13.9	53
173	Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes. FEBS Journal, 1998, 251, 821-829.	0.2	52
174	Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E359-E364.	3.3	52
175	Orientational Preferences of Neighboring Helices Can Drive ER Insertion of a Marginally Hydrophobic Transmembrane Helix. Molecular Cell, 2012, 45, 529-540.	4.5	52
176	Experimentally Constrained Topology Models for 51,208 Bacterial Inner Membrane Proteins. Journal of Molecular Biology, 2005, 352, 489-494.	2.0	51
177	Structural and mutational analysis of the ribosome-arresting human XBP1u. ELife, 2019, 8, .	2.8	51
178	Mitochondrial targeting sequences why â€~non-amphiphilic' peptides may still be amphiphilic. FEBS Letters, 1988, 235, 173-177.	1.3	50
179	Membrane protein assembly: Rules of the game. BioEssays, 1995, 17, 25-30.	1.2	50
180	Determination of N- and C-terminal Borders of the Transmembrane Domain of Integrin Subunits. Journal of Biological Chemistry, 2004, 279, 21200-21205.	1.6	50

#	Article	IF	CITATIONS
181	Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Letters, 1998, 431, 75-79.	1.3	49
182	Membrane-integration Characteristics of Two ABC Transporters, CFTR and P-glycoprotein. Journal of Molecular Biology, 2009, 387, 1153-1164.	2.0	49
183	Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2066-2070.	1.4	49
184	Functionality of the voltage-gated proton channel truncated in S4. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2313-2318.	3.3	48
185	Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E20-E28.	1.8	47
186	Assembly of the Cytochrome bo3 Complex. Journal of Molecular Biology, 2007, 371, 765-773.	2.0	47
187	Architecture of βâ€barrel membrane proteins: Analysis of trimeric porins. Protein Science, 1998, 7, 2026-2032.	3.1	46
188	The Internal Repeats in the Na+/Ca2+Exchanger-related Escherichia coli Protein YrbG Have Opposite Membrane Topologies. Journal of Biological Chemistry, 2001, 276, 18905-18907.	1.6	46
189	Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7460-7464.	3.3	46
190	Features of Transmembrane Segments That Promote the Lateral Release from the Translocase into the Lipid Phase. Biochemistry, 2007, 46, 15153-15161.	1.2	46
191	New Escherichia coli outer membrane proteins identified through prediction and experimental verification. Protein Science, 2006, 15, 884-889.	3.1	43
192	TIM23-mediated insertion of transmembrane α-helices into the mitochondrial inner membrane. EMBO Journal, 2011, 30, 1003-1011.	3.5	42
193	Coordinated disassembly of the divisome complex in <i>Escherichia coli</i> . Molecular Microbiology, 2016, 101, 425-438.	1.2	42
194	CHLPEP—A database of chloroplast transit peptides. Plant Molecular Biology Reporter, 1991, 9, 104-126.	1.0	41
195	Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. ELife, 2017, 6, .	2.8	41
196	De novo design of integral membrane proteins. Nature Structural and Molecular Biology, 1994, 1, 858-862.	3.6	40
197	Helix-helix packing in a membrane-like environment. Journal of Molecular Biology, 1997, 272, 633-641.	2.0	40
198	Chapter 10 Analysis and prediction of mitochondrial targeting peptides. Methods in Cell Biology, 2001, 65, 175-187.	0.5	40

#	Article	IF	CITATIONS
199	Improved membrane protein topology prediction by domain assignments. Protein Science, 2005, 14, 1723-1728.	3.1	40
200	Inter-helical Hydrogen Bond Formation During Membrane Protein Integration into the ER Membrane. Journal of Molecular Biology, 2003, 334, 803-809.	2.0	39
201	Antiparallel Dimers of the Small Multidrug Resistance Protein EmrE Are More Stable Than Parallel Dimers. Journal of Biological Chemistry, 2012, 287, 26052-26059.	1.6	39
202	Signal sequences are not uniformly hydrophobic. Journal of Molecular Biology, 1982, 159, 537-541.	2.0	38
203	Sec-independent protein insertion into the innerE. colimembrane A phenomenon in search of an explanation. FEBS Letters, 1994, 346, 69-72.	1.3	37
204	The Signal Recognition Particle-targeting Pathway Does Not Necessarily Deliver Proteins to the Sec-translocase inEscherichia coli. Journal of Biological Chemistry, 1999, 274, 20068-20070.	1.6	37
205	PONGO: a web server for multiple predictions of all-alpha transmembrane proteins. Nucleic Acids Research, 2006, 34, W169-W172.	6.5	37
206	Membrane protein structural biology – How far can the bugs take us? (Review). Molecular Membrane Biology, 2007, 24, 329-332.	2.0	37
207	Signals for Protein Targeting into and across Membranes. Sub-Cellular Biochemistry, 1994, 22, 1-19.	1.0	37
208	Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae. Proceedings of the United States of America, 2006, 103, 11148-11153.	3.3	36
209	Transmembrane but not soluble helices fold inside the ribosome tunnel. Nature Communications, 2018, 9, 5246.	5.8	36
210	Alanine Insertion Scanning Mutagenesis of Lactose Permease Transmembrane Helices. Journal of Biological Chemistry, 1997, 272, 29566-29571.	1.6	35
211	A day in the life of Dr K. or how I learned to stop worrying and love lysozyme: a tragedy in six acts. Journal of Molecular Biology, 1999, 293, 367-379.	2.0	35
212	Distant Downstream Sequence Determinants Can Control N-tail Translocation during Protein Insertion into the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2000, 275, 6207-6213.	1.6	35
213	Prediction of partial membrane protein topologies using a consensus approach. Protein Science, 2009, 11, 2974-2980.	3.1	35
214	Efficient Glycosylphosphatidylinositol (GPI) Modification of Membrane Proteins Requires a C-terminal Anchoring Signal of Marginal Hydrophobicity. Journal of Biological Chemistry, 2012, 287, 16399-16409.	1.6	35
215	Improved production of membrane proteins in <i>Escherichia coli</i> by selective codon substitutions. FEBS Letters, 2013, 587, 2352-2358.	1.3	34
216	Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Molecular Microbiology, 1997, 24, 249-253.	1.2	33

#	Article	IF	CITATIONS
217	Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters?. Journal of General Physiology, 2007, 129, 353-356.	0.9	33
218	Stable membrane orientations of small dual-topology membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7987-7992.	3.3	33
219	Charge pair interactions in a model transmembrane helix in the ER membrane. Journal of Molecular Biology, 2000, 303, 1-5.	2.0	32
220	Computer analysis of DNA and protein sequences. FEBS Journal, 1991, 199, 253-256.	0.2	31
221	LumenP-A neural network predictor for protein localization in the thylakoid lumen. Protein Science, 2009, 12, 2360-2366.	3.1	31
222	How Hydrophobic Is Alanine?. Journal of Biological Chemistry, 2003, 278, 29389-29393.	1.6	30
223	Membrane Topology of the STT3 Subunit of the Oligosaccharyl Transferase Complex*. Journal of Biological Chemistry, 2005, 280, 20261-20267.	1.6	30
224	Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. Biophysical Journal, 2018, 115, 1885-1894.	0.2	30
225	Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. Journal of Molecular Biology, 2019, 431, 1308-1314.	2.0	30
226	Analysis of Transmembrane Helix Integration in the Endoplasmic Reticulum in S. cerevisiae. Journal of Molecular Biology, 2009, 386, 1222-1228.	2.0	29
227	Insertion of a Bacterial Secondary Transport Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 1999, 274, 2816-2823.	1.6	28
228	Mutational analysis of protein folding inside the ribosome exit tunnel. FEBS Letters, 2017, 591, 155-163.	1.3	28
229	Translation and messenger RNA secondary structure. Journal of Theoretical Biology, 1977, 68, 321-329.	0.8	27
230	Models for mRNA Translation: Theory versus Experiment. FEBS Journal, 1978, 92, 397-402.	0.2	27
231	N-Tail translocation in a eukaryotic polytopic membrane protein. Synergy between neighboring transmembrane segments. FEBS Journal, 1999, 263, 264-269.	0.2	27
232	Quantitative Analysis of SecYEG-Mediated Insertion of Transmembrane α-Helices into the Bacterial Inner Membrane. Journal of Molecular Biology, 2013, 425, 2813-2822.	2.0	27
233	The ribosome modulates folding inside the ribosomal exit tunnel. Communications Biology, 2021, 4, 523.	2.0	27
234	Energetics of side-chain snorkeling in transmembrane helices probed by nonproteinogenic amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10559-10564.	3.3	26

#	Article	IF	CITATIONS
235	Residue-by-residue analysis of cotranslational membrane protein integration in vivo. ELife, 2021, 10, .	2.8	26
236	Mapping the Interaction of the STT3 Subunit of the Oligosaccharyl Transferase Complex with Nascent Polypeptide Chains. Journal of Biological Chemistry, 2005, 280, 40489-40493.	1.6	25
237	Cotranslational Folding of a Pentarepeat β-Helix Protein. Journal of Molecular Biology, 2018, 430, 5196-5206.	2.0	25
238	SecA-dependence of the translocation of a large periplasmic loop in the <i>Escherichia coli</i> MalF inner membrane protein is a function of sequence context. Molecular Membrane Biology, 1995, 12, 209-215.	2.0	24
239	Cleavage of a tail-anchored protein by signal peptidase. FEBS Letters, 2002, 516, 106-108.	1.3	24
240	Manipulating the genetic code for membrane protein production: What have we learnt so far?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1091-1096.	1.4	24
241	Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14119-14126.	3.3	24
242	SecA-independent Translocation of the Periplasmic N-terminal Tail of an Escherichia coli Inner Membrane Protein. Journal of Biological Chemistry, 1995, 270, 29831-29835.	1.6	23
243	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114.	1.3	23
244	Improved detection of homologous membrane proteins by inclusion of information from topology predictions. Protein Science, 2009, 11, 652-658.	3.1	23
245	The leader peptides from bacteriorhodopsin and halorhodopsin are potential membrane-spanning amphipathic helices. FEBS Letters, 1987, 213, 238-240.	1.3	22
246	Weak pulling forces exerted on N _{in} â€orientated transmembrane segments during coâ€translational insertion into the inner membrane of <i>Escherichia coli</i> . FEBS Letters, 2014, 588, 1930-1934.	1.3	21
247	Transmembrane helices containing a charged arginine are thermodynamically stable. European Biophysics Journal, 2017, 46, 627-637.	1.2	21
248	Dynamic membrane topology in an unassembled membrane protein. Nature Chemical Biology, 2019, 15, 945-948.	3.9	21
249	The concentration dependence of the error frequencies and some related quantities in protein synthesis. Journal of Theoretical Biology, 1979, 78, 113-120.	0.8	20
250	Effects of â€~hydrophobic mismatch' on the location of transmembrane helices in the ER membrane. FEBS Letters, 2001, 496, 96-100.	1.3	20
251	Competition between neighboring topogenic signals during membrane protein insertion into the ER. FEBS Journal, 2004, 272, 28-36.	2.2	20
252	Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants. Molecular Biology and Evolution, 2017, 34, 2041-2056.	3.5	20

#	Article	IF	CITATIONS
253	Positively charged residues influence the degree of SecA dependence in protein translocation across theE. coliinner membrane. FEBS Letters, 1994, 347, 169-172.	1.3	19
254	Theoretical modelling of protein synthesis. Journal of Theoretical Biology, 1987, 125, 1-14.	0.8	18
255	Membrane proteins: shaping up. Trends in Biochemical Sciences, 2002, 27, 231-234.	3.7	18
256	Introduction to Theme "Membrane Protein Folding and Insertion― Annual Review of Biochemistry, 2011, 80, 157-160.	5.0	18
257	Biological insertion of computationally designed short transmembrane segments. Scientific Reports, 2016, 6, 23397.	1.6	18
258	Early evolution of cellular electron transport: Molecular models for the ferredoxin-rubredoxin-flavodoxin region. Origins of Life and Evolution of Biospheres, 1978, 9, 27-37.	0.6	17
259	Helical sidedness and the distribution of polar residues in trans-membrane helices. Journal of Molecular Biology, 1983, 168, 193-196.	2.0	17
260	Membrane Topology of Kch, a Putative K+ Channel from Escherichia coli. Journal of Biological Chemistry, 1996, 271, 25912-25915.	1.6	17
261	Formation of helical hairpins during membrane protein integration into the endoplasmic reticulum membrane. Role of the N and C-terminal flanking regions 1 1Edited by F. Cohen. Journal of Molecular Biology, 2001, 313, 1171-1179.	2.0	17
262	Confronting Fusion Protein-Based Membrane Protein Topology Mapping with Reality: The Escherichia coli ClcA H+/Clâ~' Exchange Transporter. Journal of Molecular Biology, 2008, 381, 860-866.	2.0	17
263	Flanking Residues Help Determine Whether a Hydrophobic Segment Adopts a Monotopic or Bitopic Topology in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2011, 286, 25284-25290.	1.6	17
264	Some global ?-sheet characterstics. Biopolymers, 1978, 17, 2033-2037.	1.2	16
265	A quantitative assay to determine the amount of Signal Peptidase I in <i>E. coli</i> and the orientation of membrane vesicles. Molecular Membrane Biology, 1995, 12, 349-353.	2.0	16
266	Determinants of Topogenesis and Glycosylation of Type II Membrane Proteins. Journal of Biological Chemistry, 2000, 275, 29011-29022.	1.6	16
267	In Vivo Trp Scanning of the Small Multidrug Resistance Protein EmrE Confirms 3D Structure Models'. Journal of Molecular Biology, 2013, 425, 4642-4651.	2.0	15
268	The DsbA-DsbB system affects the formation of disulfide bonds in periplasmic but not in in in in in in in intramembraneous protein domains. FEBS Letters, 1993, 332, 49-51.	1.3	14
269	Stopâ€ŧransfer efficiency of marginally hydrophobic segments depends on the length of the carboxyâ€ŧerminal tail. EMBO Reports, 2003, 4, 178-183.	2.0	14
270	Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain. Journal of Membrane Biology, 2015, 248, 383-394.	1.0	14

#	Article	IF	CITATIONS
271	Membrane proteins: from bench to bits. Biochemical Society Transactions, 2011, 39, 747-750.	1.6	13
272	Clycosylatable GFP as a compartment-specific membrane topology reporter. Biochemical and Biophysical Research Communications, 2012, 427, 780-784.	1.0	13
273	Dislocation by the m-AAA Protease Increases the Threshold Hydrophobicity for Retention of Transmembrane Helices in the Inner Membrane of Yeast Mitochondria. Journal of Biological Chemistry, 2013, 288, 4792-4798.	1.6	13
274	Silencing of Aberrant Secretory Protein Expression by Disease-Associated Mutations. Journal of Molecular Biology, 2019, 431, 2567-2580.	2.0	13
275	Getting sense out of sequence data. Nature, 1988, 333, 605-607.	13.7	12
276	Membrane protein assembly in vivo. Advances in Protein Chemistry, 2003, 63, 1-18.	4.4	12
277	Structural basis of <scp>l</scp> -tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Research, 2021, 49, 9539-9547.	6.5	12
278	Ribosome - SRP - signal sequence interactions. FEBS Letters, 1985, 190, 1-5.	1.3	11
279	Formation of cytoplasmic turns between two closely spaced transmembrane helices during membrane protein integration into the ER membrane 1 1Edited by F. Cohen. Journal of Molecular Biology, 2000, 301, 191-197.	2.0	11
280	Membranes: reading between the lines. Current Opinion in Structural Biology, 2008, 18, 403-405.	2.6	11
281	The Mgr2 subunit of the TIM23 complex regulates membrane insertion of marginal stopâ€ŧransfer signals in the mitochondrial inner membrane. FEBS Letters, 2020, 594, 1081-1087.	1.3	11
282	Calnexin can interact withN-linked glycans located close to the endoplasmic reticulum membrane. FEBS Letters, 1996, 397, 321-324.	1.3	10
283	Sequential Closure of the Cytoplasm and Then the Periplasm during Cell Division in Escherichia coli. Journal of Bacteriology, 2012, 194, 584-586.	1.0	10
284	Why Have Small Multidrug Resistance Proteins Not Evolved into Fused, Internally Duplicated Structures?. Journal of Molecular Biology, 2014, 426, 2246-2254.	2.0	10
285	Positional editing of transmembrane domains during ion channel assembly. Journal of Cell Science, 2013, 126, 464-472.	1.2	9
286	Application of splitâ€green fluorescent protein for topology mapping membrane proteins in <i>Escherichia coli</i> . Protein Science, 2012, 21, 1571-1576.	3.1	9
287	Forcing the Issue: Aromatic Tuning Facilitates Stimulus-Independent Modulation of a Two-Component Signaling Circuit. ACS Synthetic Biology, 2015, 4, 474-481.	1.9	9
288	Cotranslational folding of alkaline phosphatase in the periplasm of <scp><i>Escherichia coli</i></scp> . Protein Science, 2020, 29, 2028-2037.	3.1	9

#	Article	IF	CITATIONS
289	Cotranslational Translocation and Folding of a Periplasmic Protein Domain in Escherichia coli. Journal of Molecular Biology, 2021, 433, 167047.	2.0	9
290	Research Networks: BioSapiens: a European network for integrated genome annotation. European Journal of Human Genetics, 2005, 13, 994-997.	1.4	8
291	A sequence correlation between oppositely charged residues in secreted proteins. Biochemical and Biophysical Research Communications, 1980, 93, 82-86.	1.0	7
292	Differentsec-requirements for signal peptide cleavage and protein translocation in a modelE. coliprotein. FEBS Letters, 1993, 318, 7-10.	1.3	7
293	Charged flanking residues control the efficiency of membrane insertion of the first transmembrane segment in yeast mitochondrial Mgm1p. FEBS Letters, 2011, 585, 1238-1242.	1.3	7
294	Production of human tetraspanin proteins in Escherichia coli. Protein Expression and Purification, 2012, 82, 373-379.	0.6	7
295	Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 615-621.	1.4	7
296	Protein Evolution and Design. Annual Review of Biochemistry, 2018, 87, 101-103.	5.0	7
297	Membrane integration and topology of RIFIN and STEVOR proteins of the <i>PlasmodiumÂfalciparum</i> parasite. FEBS Journal, 2020, 287, 2744-2762.	2.2	7
298	Decoding the Signals of Membrane Protein Sequences. , 1994, , 27-40.		7
299	A theoretical study of the attenuation control mechanism. Journal of Theoretical Biology, 1982, 97, 227-238.	0.8	6
300	Homology to region X from staphylococcal protein A is not unique to cell surface proteins. Journal of Theoretical Biology, 1987, 127, 373-376.	0.8	6
301	Estimating Zâ€ring radius and contraction in dividing <i>Escherichia coli</i> . Molecular Microbiology, 2010, 76, 151-158.	1.2	6
302	Transport of Proteins into Chloroplasts. Plant Gene Research, 1992, , 353-370.	0.4	6
303	MICROBIOLOGY: Enhanced: Translocation of Anthrax Toxin: Lord of the Rings. Science, 2005, 309, 709-710.	6.0	5
304	Stable insertion of Alzheimer AÎ ² peptide into the ER membrane strongly correlates with its length. FEBS Letters, 2007, 581, 3809-3813.	1.3	5
305	Converting a Marginally Hydrophobic Soluble Protein into a Membrane Protein. Journal of Molecular Biology, 2011, 407, 171-179.	2.0	5
306	Large Tilts in Transmembrane Helices Can Be Induced during Tertiary Structure Formation. Journal of Molecular Biology, 2014, 426, 2529-2538.	2.0	5

#	Article	IF	CITATIONS
307	Hydrophobic Blocks Facilitate Lipid Compatibility and Translocon Recognition of Transmembrane Protein Sequences. Biochemistry, 2015, 54, 1465-1473.	1.2	5
308	Murine astrotactins 1 and 2 have a similar membrane topology and mature via endoproteolytic cleavage catalyzed by a signal peptidase. Journal of Biological Chemistry, 2019, 294, 4538-4545.	1.6	5
309	Probing Interplays between Human XBP1u Translational Arrest Peptide and 80S Ribosome. Journal of Chemical Theory and Computation, 2022, 18, 1905-1914.	2.3	5
310	Targeting Signals for Protein Import into Mitochondria and Other Subcellular Organelles. Advances in Molecular and Cell Biology, 1996, 17, 1-12.	0.1	4
311	The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochemical Journal, 2016, 473, 4361-4372.	1.7	4
312	Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo. Biochemistry, 2016, 55, 5772-5779.	1.2	4
313	Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. Journal of Molecular Biology, 2018, 430, 3190-3199.	2.0	4
314	Turning yeast sequence into protein function. Nature Biotechnology, 1996, 14, 429-429.	9.4	3
315	Targeting Sequences. , 2002, , 35-46.		3
316	Membrane proteins up for grabs. Nature Biotechnology, 2007, 25, 646-647.	9.4	3
317	A short Câ€ŧerminal tail prevents misâ€ŧargeting of hydrophobic mitochondrial membrane proteins to the ER. FEBS Letters, 2013, 587, 3480-3486.	1.3	3
318	Signals for Protein Import into Organelles. , 1991, , 583-593.		3
319	Helices on the move. Nature Structural and Molecular Biology, 2005, 12, 834-835.	3.6	2
320	Membranes. Current Opinion in Structural Biology, 2006, 16, 431.	2.6	2
321	Membrane protein serendipity. Journal of Biological Chemistry, 2018, 293, 3470-3476.	1.6	2
322	Featureâ€extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins: Structure, Function and Bioinformatics, 1998, 30, 49-60	1.5	2
323	RNA splicing: Advantages of parallel processing. Journal of Theoretical Biology, 1982, 98, 563-574.	0.8	1

13.7 1

#	Article	IF	CITATIONS
325	Chapter 7 Sequence determinants of membrane protein topology. New Comprehensive Biochemistry, 1992, 22, 75-84.	0.1	1
326	Molecular Mechanisms in Biological Processes. FEBS Letters, 2005, 579, 851-851.	1.3	1
327	Lipid Bilayers, Translocons and the Shaping of Polypeptide Structure. , 2006, , 1-25.		1
328	The Use of Phylogenetic Profiles for Gene Predictions Revisited. Current Genomics, 2006, 7, 79-86.	0.7	1
329	Bioinformatics of Myelin Membrane Proteins. , 2009, , 35-53.		1
330	Cleavage-Sites in Protein Targeting Signals. , 1991, , 231-238.		1
331	Sequence Determinants of Protein Sorting Into and Across Membranes. , 1988, , 307-322.		1
332	Computer-Assisted Identification of Protein Sorting Signals and Prediction of Membrane Protein Topology and Structure. , 1996, , 1-14.		1
333	Upstream charged and hydrophobic residues impact the timing of membrane insertion of transmembrane helices. FEBS Letters, 2022, 596, 1004-1012.	1.3	1
334	Membrane protein assembly. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1995, , 1-16.	0.3	0
335	Membrane protein topogenesis in Escherichia coli. Membrane Protein Transport, 1995, 2, 201-214.	0.2	0
336	Membrane Topology of S4 of the Mouse Voltage-Gated Proton Channel. Biophysical Journal, 2010, 98, 539a.	0.2	0
337	Pre-Insertion Topology of Transmembrane Proteins is Highly Plastic and Can Be Controlled by a Single C-Terminal Residue. Biophysical Journal, 2011, 100, 345a-346a.	0.2	0
338	Do Acidic Residues in TH8-TH9 Play a Role in Transmembrane Insertion of the Diphtheria Toxin T-Domain?. Biophysical Journal, 2014, 106, 716a-717a.	0.2	0
339	Partitioning Charged Side Chains into Lipid Bilayer Membranes. Biophysical Journal, 2014, 106, 297a.	0.2	0
340	GPCRs AND TRANSPORTERS: LIGANDS, COFACTORS, DRUG DEVELOPMENT. , 2014, , .		0
341	Cotranslational Protein Folding. Biophysical Journal, 2016, 110, 4a.	0.2	0
342	Introduction to the Theme on Membrane Channels. Annual Review of Biochemistry, 2021, 90, 503-505.	5.0	0

#	Article	IF	CITATIONS
343	Molten globules lure transmembrane helices away from the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2112899118.	3.3	0
344	Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters?. Journal of Cell Biology, 2007, 177, i9-i9.	2.3	0
345	Mapping out forces that act on transmembrane helices during membrane insertion. FASEB Journal, 2012, 26, 229.1.	0.2	0
346	Structure of Targeting Peptides for Organellar Protein Import. , 1990, , 2559-2566.		0
347	Computer analysis of DNA and protein sequences. , 1991, , 85-88.		Ο
348	Assembly of Escherichia Coli Inner Membrane Proteins: Sec-Dependent and Sec-Independent Membrane Insertion. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1992, , 449-455.	0.2	0
349	Sequence Determinants for Protein Import into Chloroplasts and Thylakoid Membrane Protein Assembly. , 1992, , 195-199.		0
350	Targeting Signals and Mechanisms of Protein Insertion into Membranes. , 1993, , 175-182.		0
351	Assembly of Integral Membrane Proteins. , 1994, , 199-205.		Ο