Yen Wei

List of Publications by Citations

Source: https://exaly.com/author-pdf/454550/yen-wei-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 467 22,952 129 h-index g-index citations papers 26,205 482 7.5 7.37 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
467	One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. <i>Small</i> , 2009 , 5, 2349-70	11	730
466	Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. <i>Nature Materials</i> , 2014 , 13, 36-41	27	526
465	Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. <i>Biomacromolecules</i> , 2011 , 12, 2894-901	6.9	487
464	Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. <i>Nanoscale</i> , 2015 , 7, 11486-508	7.7	453
463	Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. <i>Nanoscale</i> , 2012 , 4, 5581-4	7.7	428
462	Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. <i>Nanoscale</i> , 2016 , 8, 16819-16840	7.7	421
461	Redox-responsive polymers for drug delivery: from molecular design to applications. <i>Polymer Chemistry</i> , 2014 , 5, 1519-1528	4.9	419
460	A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. <i>Toxicology Research</i> , 2012 , 1, 62-68	2.6	384
459	An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. <i>Advanced Materials</i> , 2015 , 27, 3518-24	24	366
458	Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2118-21	16.4	254
457	A magnetic self-healing hydrogel. <i>Chemical Communications</i> , 2012 , 48, 9305-7	5.8	245
456	Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. <i>Polymer Chemistry</i> , 2012 , 3, 3235	4.9	244
455	Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3476-3482	7.3	240
454	Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. <i>Biomaterials</i> , 2007 , 28, 1741-51	15.6	234
453	CO2 -Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8934-8	16.4	232
452	Highly Efficient Self-Healable and Dual Responsive Cellulose-Based Hydrogels for Controlled Release and 3D Cell Culture. <i>Advanced Functional Materials</i> , 2017 , 27, 1703174	15.6	228
451	Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. <i>Polymer Chemistry</i> , 2014 , 5, 399-404	4.9	217

(2017-2017)

450	Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. <i>Advanced Functional Materials</i> , 2017 , 27, 1603623	15.6	209
449	Polymerizable aggregation-induced emission dye-based fluorescent nanoparticles for cell imaging applications. <i>Polymer Chemistry</i> , 2014 , 5, 356-360	4.9	206
448	Surface functionalized SiO nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. <i>Journal of Colloid and Interface Science</i> , 2017 , 499, 170-179	9.3	205
447	Carbon nanotubeNitrimer composite for facile and efficient photo-welding of epoxy. <i>Chemical Science</i> , 2014 , 5, 3486-3492	9.4	201
446	Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. <i>ACS Applied Materials & Company Interfaces</i> , 2013 , 5, 1943-7	9.5	192
445	A Novel Mechanochromic and Photochromic Polymer Film: When Rhodamine Joins Polyurethane. <i>Advanced Materials</i> , 2015 , 27, 6469-74	24	182
444	3D printing of bone tissue engineering scaffolds. <i>Bioactive Materials</i> , 2020 , 5, 82-91	16.7	181
443	Regional Shape Control of Strategically Assembled Multishape Memory Vitrimers. <i>Advanced Materials</i> , 2016 , 28, 156-60	24	177
442	Recent Advances and Progress on Melanin-like Materials and Their Biomedical Applications. <i>Biomacromolecules</i> , 2018 , 19, 1858-1868	6.9	168
441	Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. <i>Toxicology Research</i> , 2013 , 2, 335	2.6	167
440	Interaction of tannic acid with carbon nanotubes: enhancement of dispersibility and biocompatibility. <i>Toxicology Research</i> , 2015 , 4, 160-168	2.6	166
439	Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 194-206	7.3	165
438	A durable monolithic polymer foam for efficient solar steam generation. <i>Chemical Science</i> , 2018 , 9, 623-	692.8	164
437	Cellular responses of aniline oligomers: a preliminary study. <i>Toxicology Research</i> , 2012 , 1, 201	2.6	157
436	Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. <i>Applied Surface Science</i> , 2018 , 459, 588-595	6.7	145
435	A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. <i>Materials Science and Engineering C</i> , 2017 , 81, 416-421	8.3	144
434	Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. <i>Materials Science and Engineering C</i> , 2017 , 77, 972-977	8.3	139
433	Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. <i>Chemical Science</i> , 2017 , 8, 724-733	9.4	138

432	Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. <i>Materials Science and Engineering C</i> , 2017 , 80, 578-583	8.3	133
431	Preparation of polyethylene polyamine@tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2018 , 82, 92-101	5.3	130
430	Synthesis of polyacrylamide immobilized molybdenum disulfide (MoS 2 @PDA@PAM) composites via mussel-inspired chemistry and surface-initiated atom transfer radical polymerization for removal of copper (II) ions. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2018 , 86, 174-184	5.3	127
429	CoreBhell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2823-2840		127
428	Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging. Materials Science and Engineering C, 2017, 80, 708-714	8.3	124
427	Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. <i>Materials Science and Engineering C</i> , 2017 , 80, 411-416	8.3	120
426	Cross-linkable aggregation induced emission dye based red fluorescent organic nanoparticles and their cell imaging applications. <i>Polymer Chemistry</i> , 2013 , 4, 5060	4.9	119
425	Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5740-5745	16.4	115
424	Facile preparation and cell imaging applications of fluorescent organic nanoparticles that combine AIE dye and ring-opening polymerization. <i>Polymer Chemistry</i> , 2014 , 5, 318-322	4.9	111
423	Facile fabrication and cell imaging applications of aggregation-induced emission dye-based fluorescent organic nanoparticles. <i>Polymer Chemistry</i> , 2013 , 4, 4317	4.9	110
422	Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil water separation. <i>RSC Advances</i> , 2013 , 3, 23432	3.7	108
421	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 33660-33673	9.5	106
420	Surface modification and drug delivery applications of MoS2 nanosheets with polymers through the combination of mussel inspired chemistry and SET-LRP. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2018 , 82, 205-213	5.3	105
419	A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry?. <i>Polymer Chemistry</i> , 2013 , 4, 5395	4.9	103
418	One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption. <i>ACS Applied Materials & District Materials</i> (1988) 1988 1989 1989 1989 1989 1989 1989	9.5	101
417	Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. <i>Chemical Engineering Journal</i> , 2017 , 308, 527-534	14.7	100
416	Multicomponent Combinatorial Polymerization via the Biginelli Reaction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8690-3	16.4	100
415	Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. <i>Polymer Chemistry</i> , 2014 , 5, 104	49 ⁴ 1856	5 99

414	Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu removal. <i>International Journal of Biological Macromolecules</i> , 2019 , 136, 476-485	7.9	98
413	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. <i>Polymer Chemistry</i> , 2012 , 3, 2716	4.9	98
412	Direct encapsulation of AIE-active dye with Eyclodextrin terminated polymers: Self-assembly and biological imaging. <i>Materials Science and Engineering C</i> , 2017 , 78, 862-867	8.3	97
411	Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting Diodes over 750 nm. <i>Chemistry of Materials</i> , 2017 , 29, 4775-4782	9.6	97
410	The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. <i>Polymer Chemistry</i> , 2015 , 6, 8233-8239	4.9	96
409	PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. <i>Polymer Chemistry</i> , 2014 , 5, 689-693	4.9	96
408	Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. <i>Materials Science and Engineering C</i> , 2017 , 79, 563-569	8.3	94
407	Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. <i>Chemical Science</i> , 2016 , 7, 4741-4747	9.4	94
406	Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 807-822	7.8	93
405	PEGylation of fluoridated hydroxyapatite (FAp):Ln3+ nanorods for cell imaging. <i>Polymer Chemistry</i> , 2013 , 4, 4120	4.9	93
404	Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. <i>Chemical Engineering Journal</i> , 2018 , 337, 82-90	14.7	92
403	Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. <i>Advanced Materials</i> , 2018 , 30, e1801103	24	92
402	Synthesis of biodegradable and electroactive tetraaniline grafted poly(ester amide) copolymers for bone tissue engineering. <i>Biomacromolecules</i> , 2012 , 13, 2881-9	6.9	90
401	Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications. <i>Materials Science and Engineering C</i> , 2016 , 66, 215-220	8.3	90
400	A novel biodegradable self-healing hydrogel to induce blood capillary formation. <i>NPG Asia Materials</i> , 2017 , 9, e363-e363	10.3	89
399	Recent progress and advances in the environmental applications of MXene related materials. <i>Nanoscale</i> , 2020 , 12, 3574-3592	7.7	88
398	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015 , 3, 20113-20117	13	87
397	Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. <i>Polymer Chemistry</i> , 2014 , 5, 2704-2708	4.9	87

396	Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. <i>Nanoscale</i> , 2016 , 8, 4452-7	7.7	86
395	A novel method for preparing AIE dye based cross-linked fluorescent polymeric nanoparticles for cell imaging. <i>Polymer Chemistry</i> , 2014 , 5, 683-688	4.9	85
394	Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: a new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12723		85
393	Recent development and prospects of surface modification and biomedical applications of MXenes. <i>Nanoscale</i> , 2020 , 12, 1325-1338	7.7	85
392	In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering. <i>Biomacromolecules</i> , 2014 , 15, 1115-23	6.9	84
391	Self-Healing Hydrogel with a Double Dynamic Network Comprising Imine and Borate Ester Linkages. <i>Chemistry of Materials</i> , 2019 , 31, 5576-5583	9.6	83
390	Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. <i>Acta Biomaterialia</i> , 2014 , 10, 5074-5080	10.8	82
389	Cytotoxicity study of polyethylene glycol derivatives. <i>RSC Advances</i> , 2017 , 7, 18252-18259	3.7	81
388	Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. <i>Polymer Chemistry</i> , 2017 , 8, 537-544	4.9	81
387	Aggregation-induced emission material based fluorescent organic nanoparticles: facile PEGylation and cell imaging applications. <i>RSC Advances</i> , 2013 , 3, 9633	3.7	80
386	Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. <i>Polymer Chemistry</i> , 2015 , 6, 1786-1792	4.9	79
385	Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. <i>Polymer Chemistry</i> , 2015 , 6, 607-612	4.9	77
384	Combining mussel-inspired chemistry and the Michael addition reaction to disperse carbon nanotubes. <i>RSC Advances</i> , 2012 , 2, 12153	3.7	77
383	A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. <i>Materials Science and Engineering C</i> , 2019 , 94, 270-278	8.3	77
382	UV-curable nanocasting technique to prepare bio-mimetic super-hydrophobic non-fluorinated polymeric surfaces for advanced anticorrosive coatings. <i>Polymer Chemistry</i> , 2013 , 4, 926-932	4.9	76
381	Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 198-2	2643	76
380	Mussel-inspired chemistry and StBer method for highly stabilized water-in-oil emulsions separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20439-20443	13	75
379	Dne potsynthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik lields reaction on the stage of polymer chemistry. <i>Polymer Chemistry</i> , 2014 , 5, 1857-1862	4.9	75

(2012-2017)

378	Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. <i>Biosensors and Bioelectronics</i> , 2017 , 87, 466-472	11.8	75	
377	Synthesis of Multifunctional Polymers through the Ugi Reaction for Protein Conjugation. <i>Macromolecules</i> , 2014 , 47, 5607-5612	5.5	73	
376	Morphology Evolution of Polymeric Assemblies Regulated with Fluoro-Containing Mesogen in Polymerization-Induced Self-Assembly. <i>Macromolecules</i> , 2017 , 50, 8192-8201	5.5	7º	
375	Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. <i>Nature Communications</i> , 2018 , 9, 1906	17.4	70	
374	Tailoring the Multicompartment Nanostructures of Fluoro-Containing ABC Triblock Terpolymer Assemblies via Polymerization-Induced Self-Assembly. <i>Macromolecules</i> , 2017 , 50, 8212-8220	5.5	69	
373	Novel chitosandellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	69	
372	Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry. <i>ACS Applied Materials & ACS Applied &</i>	9.5	68	
371	Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6740-6746	13	67	
370	Mussel inspired modification of carbon nanotubes using RAFT derived stimuli-responsive polymers. <i>RSC Advances</i> , 2013 , 3, 21817	3.7	67	
369	Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. <i>Biomaterials</i> , 2017 , 133, 20-28	15.6	65	
368	Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14719	13	64	
367	A pure inorganic ZnO-Co3O4 overlapped membrane for efficient oil/water emulsions separation. <i>Scientific Reports</i> , 2015 , 5, 9688	4.9	63	
366	Injectable and Self-Healing Chitosan Hydrogel Based on Imine Bonds: Design and Therapeutic Applications. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	63	
365	Antioil Ag3PO4 Nanoparticle/Polydopamine/Al2O3 Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8019-8028	8.3	63	
364	Detecting topology freezing transition temperature of vitrimers by AIE luminogens. <i>Nature Communications</i> , 2019 , 10, 3165	17.4	63	
363	Fine-tuning the mechanofluorochromic properties of benzothiadiazole-cored cyano-substituted diphenylethene derivatives through DA effect. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8932-8938	7.1	62	
362	In vitro studies on regulation of osteogenic activities by electrical stimulus on biodegradable electroactive polyelectrolyte multilayers. <i>Biomacromolecules</i> , 2014 , 15, 3146-57	6.9	62	
361	Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multi-scale structures mimicking the surface of Xanthosoma sagittifolium leaf. Journal of Materials Chemistry 2012, 22, 15845		62	

360	Janus membrane decorated via a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4941-4949	13	62
359	Self-Adapting Hydrogel to Improve the Therapeutic Effect in Wound-Healing. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2018 , 10, 26046-26055	9.5	61
358	Thermally Triggered in Situ Assembly of Gold Nanoparticles for Cancer Multimodal Imaging and Photothermal Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 10453-10460	9.5	60
357	Aggregation-induced emission dye based luminescent silica nanoparticles: facile preparation, biocompatibility evaluation and cell imaging applications. <i>RSC Advances</i> , 2014 , 4, 10060	3.7	60
356	Stimulus responsive cross-linked AIE-active polymeric nanoprobes: fabrication and biological imaging application. <i>Polymer Chemistry</i> , 2015 , 6, 8214-8221	4.9	59
355	Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution. <i>Polymer Chemistry</i> , 2015 , 6, 5876-5883	4.9	58
354	Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. <i>Journal of Colloid and Interface Science</i> , 2018 , 519, 137-144	9.3	58
353	Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity. <i>Nature Communications</i> , 2018 , 9, 3799	17.4	58
352	Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. <i>Nature Communications</i> , 2017 , 8, 1559	17.4	57
351	Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials. <i>Journal of Controlled Release</i> , 2017 , 259, 40-52	11.7	56
350	A facile strategy for fabrication of aggregation-induced emission (AIE) active fluorescent polymeric nanoparticles (FPNs) via post modification of synthetic polymers and their cell imaging. <i>Materials Science and Engineering C</i> , 2017 , 79, 590-595	8.3	55
349	Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. <i>RSC Advances</i> , 2015 , 5, 68430-68438	3.7	55
348	Breathing Demulsification: A Three-Dimensional (3D) Free-Standing Superhydrophilic Sponge. <i>ACS Applied Materials & District Materials </i>	9.5	55
347	Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. Journal of Materials Chemistry C, 2014 , 2, 816-820	7.1	55
346	One-step breaking and separating emulsion by tungsten oxide coated mesh. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied Materials</i>	9.5	54
345	CO2-Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. <i>Angewandte Chemie</i> , 2015 , 127, 9062-9066	3.6	54
344	Fluorescent nanoparticles from starch: facile preparation, tunable luminescence and bioimaging. <i>Carbohydrate Polymers</i> , 2015 , 121, 49-55	10.3	54
343	Facile fabrication of luminescent hyaluronic acid with aggregation-induced emission through formation of dynamic bonds and their theranostic applications. <i>Materials Science and Engineering C</i> , 2018 , 91, 201-207	8.3	54

(2014-2015)

342	A rather facile strategy for the fabrication of PEGylated AIE nanoprobes. <i>Polymer Chemistry</i> , 2015 , 6, 5288-5294	4.9	53
341	Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. <i>Science Advances</i> , 2020 , 6, eaay8606	14.3	53
340	Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. <i>RSC Advances</i> , 2015 , 5, 82503-82512	3.7	52
339	Fabrication and biological imaging application of AIE-active luminescent starch based nanoprobes. <i>Carbohydrate Polymers</i> , 2016 , 142, 38-44	10.3	52
338	Ultra-stable biocompatible cross-linked fluorescent polymeric nanoparticles using AIE chain transfer agent. <i>Polymer Chemistry</i> , 2014 , 5, 3758	4.9	52
337	Durable liquid-crystalline vitrimer actuators. <i>Chemical Science</i> , 2019 , 10, 3025-3030	9.4	50
336	Magnetic Hydrogel with Optimally Adaptive Functions for Breast Cancer Recurrence Prevention. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900203	10.1	50
335	Towards development of a versatile and efficient strategy for fabrication of GO based polymer nanocomposites. <i>Polymer Chemistry</i> , 2015 , 6, 7211-7218	4.9	50
334	Volatile-Organic-Compound-Intercepting Solar Distillation Enabled by a Photothermal/Photocatalytic Nanofibrous Membrane with Dual-Scale Pores. <i>Environmental Science & Environmental Science</i>	10.3	50
333	Reprocessable Thermoset Soft Actuators. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17474-1	7:467.9	50
332	Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. <i>Journal of Colloid and Interface Science</i> , 2017 , 505, 168-1	177	49
331	From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation. <i>Polymer Chemistry</i> , 2015 , 6, 4940-4945	4.9	49
330	A novel poly(Eglutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. <i>Materials Science and Engineering C</i> , 2015 , 48, 533-40	8.3	49
329	Biocompatibility evaluation of aniline oligomers with different end-functional groups. <i>Toxicology Research</i> , 2013 , 2, 427	2.6	49
328	Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24558		49
327	The power of one-pot: a hexa-component system containing Latacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes. <i>Polymer Chemistry</i> , 2015 , 6, 509-5	13 9	48
326	High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. <i>Acta Biomaterialia</i> , 2015 , 11, 183-90	10.8	48
325	Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. <i>Polymer Chemistry</i> , 2014 , 5, 2695-2699	4.9	48

324	Liquid-Crystalline Soft Actuators with Switchable Thermal Reprogrammability. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4778-4784	16.4	48
323	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15822-15827	13	47
322	Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyurea. <i>Polymer Chemistry</i> , 2012 , 3, 2209	4.9	47
321	Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. <i>Materials Science and Engineering C</i> , 2018 , 84, 60-66	8.3	47
320	Aggregation Induced Emission Fluorogens Based Nanotheranostics for Targeted and Imaging-Guided Chemo-Photothermal Combination Therapy. <i>Small</i> , 2016 , 12, 6568-6575	11	46
319	High Throughput Preparation of UV-Protective Polymers from Essential Oil Extracts via the Biginelli Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6865-6872	16.4	45
318	From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. <i>Macromolecules</i> , 2014 , 47, 4676-4683	5.5	45
317	Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition Bragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Letters, 2015, 4, 128-132	6.6	44
316	Lotus- and Mussel-Inspired PDA-PET/PTFE Janus Membrane: Toward Integrated Separation of Light and Heavy Oils from Water. <i>ACS Applied Materials & District Materials</i> (11, 20545-20556)	9.5	43
315	Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 149, 168-173	6	43
314	Ultrabright and biocompatible AIE dye based zwitterionic polymeric nanoparticles for biological imaging. <i>RSC Advances</i> , 2014 , 4, 35137-35143	3.7	42
313	One-pot synthesis and biological imaging application of an amphiphilic fluorescent copolymer via a combination of RAFT polymerization and Schiff base reaction. <i>Polymer Chemistry</i> , 2015 , 6, 2133-2138	4.9	41
312	Electrospinning of Cellulose-Based Fibers From NaOH/Urea Aqueous System. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 695-700	3.9	41
311	Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine. <i>Journal of Colloid and Interface Science</i> , 2018 , 511, 383-391	9.3	40
310	Ultrafast Preparation of AIE-Active Fluorescent Organic Nanoparticles via a "One-Pot" Microwave-Assisted Kabachnik-Fields Reaction. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1754-	1 75 9	40
309	Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. <i>Bioactive Materials</i> , 2021 , 6, 137-145	16.7	39
308	Marrying mussel inspired chemistry with SET-LRP: A novel strategy for surface functionalization of carbon nanotubes. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 1872-1879	2.5	38
307	Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. <i>ACS Macro Letters</i> , 2015 , 4, 1189-1193	6.6	38

306	Low-Tortuosity Water Microchannels Boosting Energy Utilization for High Water Flux Solar Distillation. <i>Environmental Science & Energy</i> , 7 2020 , 54, 5150-5158	10.3	38
305	Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications. <i>Materials Science and</i>	8.3	38
304	One-Pot Cascade Synthetic Strategy: A Smart Combination of Chemoenzymatic Transesterification and Raft Polymerization. <i>ACS Macro Letters</i> , 2012 , 1, 1224-1227	6.6	38
303	A powerful Bne-potItool for fabrication of AIE-active luminescent organic nanoparticles through the combination of RAFT polymerization and multicomponent reactions. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1051-1058	7.8	37
302	Fabrication of cross-linked fluorescent polymer nanoparticles and their cell imaging applications. Journal of Materials Chemistry C, 2015 , 3, 1854-1860	7.1	37
301	Red fluorescent cross-linked glycopolymer nanoparticles based on aggregation induced emission dyes for cell imaging. <i>Polymer Chemistry</i> , 2015 , 6, 1360-1366	4.9	37
300	A multicomponent polymerization system: click@hemoenzymatic@ATRP in one-pot for polymer synthesis. <i>Polymer Chemistry</i> , 2013 , 4, 466-469	4.9	37
299	Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly. <i>Macromolecules</i> , 2017 , 50, 9750-9759	5.5	37
298	Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 9955-9964	8.3	36
297	Asymmetric superwetting configuration of Janus membranes based on thiol@ne clickable silane nanospheres enabling on-demand and energy-efficient oilwater remediation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10047-10057	13	36
296	A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 767-773	9.3	36
295	A fast and convenient cellulose hydrogel-coated colander for high-efficiency oilwater separation. <i>RSC Advances</i> , 2014 , 4, 32544-32548	3.7	36
294	Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. <i>Journal of Materials Science</i> , 2017 , 52, 504-518	4.3	36
293	CO2-switchable drug release from magneto-polymeric nanohybrids. <i>Polymer Chemistry</i> , 2015 , 6, 2319-2	234.6	36
292	Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9133-9145	13	36
291	Renewable itaconic acid based cross-linked fluorescent polymeric nanoparticles for cell imaging. <i>Polymer Chemistry</i> , 2014 , 5, 5885-5889	4.9	35
290	Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing. <i>Materials Science and Engineering C</i> , 2017 , 81, 303-313	8.3	35
289	A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging. <i>Talanta</i> , 2017 , 174, 803-808	6.2	35

288	Targeted Synthesis of a 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 26431-26435	3.8	35
287	Effect of alkyl length dependent crystallinity for the mechanofluorochromic feature of alkyl phenothiazinyl tetraphenylethenyl acrylonitrile derivatives. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4786-4791	7.1	35
286	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. <i>Nanoscale</i> , 2016 , 8, 18558-18564	7.7	35
285	Postpolymerization Modification of Poly(dihydropyrimidin-2(1H)-thione)s via the ThioureaHaloalkane Reaction to Prepare Functional Polymers. <i>ACS Macro Letters</i> , 2015 , 4, 843-847	6.6	34
284	Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a "one-pot" multicomponent reaction. <i>Carbohydrate Polymers</i> , 2016 , 152, 189-195	10.3	34
283	Synthesis and Thermo-/pH- Dual Responsive Properties of Poly(amidoamine) Dendronized Poly(2-hydroxyethyl) Methacrylate. <i>Macromolecules</i> , 2010 , 43, 4314-4323	5.5	34
282	Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 8, 28522-28528	9.5	34
281	Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH3NH3PbI3 perovskite coating. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7285-7290	13	33
2 80	Mussel inspired preparation of highly dispersible and biocompatible carbon nanotubes. <i>RSC Advances</i> , 2015 , 5, 25329-25336	3.7	33
279	Topological engineering of amphiphilic copolymers via RAFT dispersion copolymerization of benzyl methacrylate and 2-(perfluorooctyl)ethyl methacrylate for polymeric assemblies with tunable nanostructures. <i>Polymer Chemistry</i> , 2018 , 9, 912-919	4.9	33
278	Functional epoxy vitrimers and composites. <i>Progress in Materials Science</i> , 2021 , 120, 100710	42.2	33
277	Mussel-inspired preparation of layered double hydroxides based polymer composites for removal of copper ions. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 416-427	9.3	32
276	Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention. <i>Biomaterials</i> , 2015 , 47, 13-9	15.6	32
275	Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. <i>ACS Applied Materials & District Research</i> , 12, 14315-14322	9.5	31
274	Semi-Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerization-Induced Self-Assembly. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1700840	4.8	31
273	Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic-co-glycolic acid)/Polypyrrole Nanocomposites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 24445-54	9.5	31
272	Fluorescent Glycopolymer Nanoparticles Based on Aggregation-Induced Emission Dyes: Preparation and Bioimaging Applications. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 678-684	2.6	30
271	Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. <i>Science China Chemistry</i> , 2016 , 59, 1541-1547	7.9	30

270	Nonspherical Liquid Crystalline Assemblies with Programmable Shape Transformation. <i>ACS Macro Letters</i> , 2018 , 7, 956-961	6.6	30
269	Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 116, 739-44	6	30
268	Luminescence tunable fluorescent organic nanoparticles from polyethyleneimine and maltose: facile preparation and bioimaging applications. <i>RSC Advances</i> , 2014 , 4, 22294	3.7	30
267	A Dipeptide-Based Multicolored-Switching Luminescent Solid Material: When Molecular Assemblies Meet Mechanochemical Reaction. <i>Angewandte Chemie</i> , 2012 , 124, 6504-6507	3.6	30
266	Promotion of Color-Changing Luminescent Hydrogels from Thermo to Electrical Responsiveness toward Biomimetic Skin Applications. <i>ACS Nano</i> , 2021 , 15, 10415-10427	16.7	30
265	Toward the development of versatile functionalized carbon nanotubes. <i>RSC Advances</i> , 2015 , 5, 38316-3	83 ,7 3	29
264	PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. <i>Carbohydrate Polymers</i> , 2018 , 184, 445-452	10.3	29
263	Facile One-Pot Synthesis of New Functional Polymers through Multicomponent Systems. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 486-492	2.6	29
262	Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization. <i>Applied Surface Science</i> , 2017 , 399, 499-505	6.7	28
261	Construction of biodegradable and biocompatible AIE-active fluorescent polymeric nanoparticles by Ce(IV)/HNO redox polymerization in aqueous solution. <i>Materials Science and Engineering C</i> , 2017 , 78, 191-197	8.3	28
260	Controllable multicolor switching of oligopeptide-based mechanochromic molecules: from gel phase to solid powder. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3399-3405	7.1	28
259	Biomimic modification of graphene oxide. <i>New Journal of Chemistry</i> , 2015 , 39, 8172-8178	3.6	28
258	Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 4663-46	5 12 8	28
257	Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations. <i>Polymer Chemistry</i> , 2014 , 5, 6656-6661	4.9	28
256	Photo-responsive liquid crystalline vitrimer containing oligoanilines. <i>Chinese Chemical Letters</i> , 2017 , 28, 2139-2142	8.1	28
255	Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch reaction and RAFT polymerization and their cell imaging applications. <i>Polymer Chemistry</i> , 2017 , 8, 4805-4810	4.9	28
254	Synthesis of RGO/Cu8S5/PPy Composite Nanosheets with Enhanced Peroxidase-Like Activity for Sensitive Colorimetric Detection of H2O2 and Phenol. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600233	3.1	28
253	A biocompatible cross-linked fluorescent polymer prepared via ring-opening PEGylation of 4-arm PEG-amine, itaconic anhydride, and an AIE monomer. <i>Polymer Chemistry</i> , 2015 , 6, 3634-3640	4.9	27

252	Metal®rganic framework derived petal-like Co3O4@CoNi2S4 hybrid on carbon cloth with enhanced performance for supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1428-1436	6.8	27
251	One-pot synthesis of optically active polymer via concurrent cooperation of enzymatic resolution and living radical polymerization. <i>Polymer Chemistry</i> , 2013 , 4, 264-267	4.9	27
250	Synthesis of Amphiphilic Hyperbranched AIE-active Fluorescent Organic Nanoparticles and Their Application in Biological Application. <i>Macromolecular Bioscience</i> , 2016 , 16, 223-30	5.5	27
249	Smart Nylon Membranes with pH-Responsive Wettability: High-Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactant-Stabilized Emulsions. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801179	4.6	27
248	Dynamic agent of an injectable and self-healing drug-loaded hydrogel for embolization therapy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 172, 601-607	6	27
247	A versatile CeO/CoO coated mesh for food wastewater treatment: Simultaneous oil removal and UV catalysis of food additives. <i>Water Research</i> , 2018 , 137, 144-152	12.5	26
246	Fabrication of amphiphilic fluorescent nanoparticles with an AIE feature via a one-pot clickable mercaptoacetic acid locking imine reaction: synthesis, self-assembly and bioimaging. <i>Polymer Chemistry</i> , 2016 , 7, 4559-4566	4.9	26
245	Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. <i>Biomaterials</i> , 2018 , 174, 31-40	15.6	26
244	Facile fabrication of aggregation-induced emission based red fluorescent organic nanoparticles for cell imaging. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2014 , 32, 871-879	3.5	26
243	Ultrasonic-assisted Kabachnik-Fields reaction for rapid fabrication of AIE-active fluorescent organic nanoparticles. <i>Ultrasonics Sonochemistry</i> , 2017 , 35, 319-325	8.9	26
242	pH-Responsive Drug Delivery by Amphiphilic Copolymer through Boronatelatechol Complexation. <i>ChemPlusChem</i> , 2013 , 78, 175-184	2.8	26
241	Self-assembled tetraoctylammonium bromide as an electron-injection layer for cathode-independent high-efficiency polymer light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8715		26
240	Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. <i>PLoS ONE</i> , 2016 , 11, e0154924	3.7	26
239	A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. <i>Carbohydrate Polymers</i> , 2017 , 174, 723-730	10.3	25
238	Facile Fabrication of PEGylated Fluorescent Organic Nanoparticles with Aggregation-Induced Emission Feature via Formation of Dynamic Bonds and Their Biological Imaging Applications. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1657-1661	4.8	25
237	Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery. Journal of Colloid and Interface Science, 2017, 508, 396-404	9.3	25
236	The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature. <i>Materials Science and Engineering C</i> , 2017 , 80, 543-548	8.3	25
235	A novel approach to electrospinning of pristine and aligned MEH-PPV using binary solvents. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5523		25

234	Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. <i>ACS Applied Materials & Discrete Research</i> , 12, 55659-55674	9.5	25	
233	A facile FeBr3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin. <i>Applied Surface Science</i> , 2018 , 434, 204-210	6.7	25	
232	One-step synthesis, self-assembly and bioimaging applications of adenosine triphosphate containing amphiphilies with aggregation-induced emission feature. <i>Materials Science and Engineering C</i> , 2017 , 73, 252-256	8.3	24	
231	Surface PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. <i>Journal of Drug Delivery Science and Technology</i> , 2020 , 57, 101644	4.5	24	
230	Enhanced removal capability of kaolin toward methylene blue by mussel-inspired functionalization. Journal of Materials Science, 2016 , 51, 8116-8130	4.3	24	
229	Glycosylated aggregation induced emission dye based fluorescent organic nanoparticles: preparation and bioimaging applications. <i>RSC Advances</i> , 2014 , 4, 24189	3.7	24	
228	Fabrication, self-assembly and biomedical applications of luminescent sodium hyaluronate with aggregation-induced emission feature. <i>Materials Science and Engineering C</i> , 2017 , 81, 120-126	8.3	24	
227	Preparation of fluorescent organic nanoparticles from polyethylenimine and sucrose for cell imaging. <i>Materials Science and Engineering C</i> , 2016 , 68, 37-42	8.3	24	
226	Photo-induced surface grafting of phosphorylcholine containing copolymers onto mesoporous silica nanoparticles for controlled drug delivery. <i>Materials Science and Engineering C</i> , 2017 , 79, 596-604	8.3	23	
225	Surface grafting of Eu doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications. <i>Materials Science and Engineering C</i> , 2017 , 77, 420-426	8.3	23	
224	Preparation of emissive glucose-containing polymer nanoparticles and their cell imaging applications. <i>Polymer Chemistry</i> , 2015 , 6, 4455-4461	4.9	23	
223	Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments. <i>Scientific Reports</i> , 2016 , 6, 32540	4.9	23	
222	A facile approach to surface modification on versatile substrates for biological applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17159		23	
221	Direct Surface Functionalization of Cellulose Nanocrystals with Hyperbranched Polymers through the Anionic Polymerization for pH-Responsive Intracellular Drug Delivery. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19202-19212	8.3	23	
220	A dual functional Janus membrane combining superwettability with electrostatic force for controllable anionic/cationic emulsion separation and in situ surfactant removal. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27156-27163	13	23	
219	A bifunctional EMnO mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. <i>Journal of Colloid and Interface Science</i> , 2020 , 579, 412-424	9.3	22	
218	Intrinsically electroactive polyimide microspheres fabricated by electrospraying technology for ascorbic acid detection. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15666		22	
217	A Facile Approach for Fabricating Dual-Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Water-Soluble Proteins. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600291	4.6	22	

216	Facile preparation of magnetic composites based on carbon nanotubes: Utilization for removal of environmental pollutants. <i>Journal of Colloid and Interface Science</i> , 2019 , 545, 8-15	9.3	21
215	Polymer actuators based on covalent adaptable networks. <i>Polymer Chemistry</i> , 2020 , 11, 5297-5320	4.9	21
214	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. <i>Science China Life Sciences</i> , 2018 , 61, 448-456	8.5	21
213	Fabrication of multifunctional fluorescent organic nanoparticles with AIE feature through photo-initiated RAFT polymerization. <i>Polymer Chemistry</i> , 2017 , 8, 7390-7399	4.9	21
212	Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy. <i>RSC Advances</i> , 2015 , 5, 104451-104457	3.7	21
211	A novel fluorescent amphiphilic glycopolymer based on a facile combination of isocyanate and glucosamine. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1738-1744	7.1	21
210	Metal-phenolic networks: facile assembled complexes for cancer theranostics. <i>Theranostics</i> , 2021 , 11, 6407-6426	12.1	21
209	One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 126, 273-9	6	20
208	Facile fabrication of hydrogel coated membrane for controllable and selective oil-in-water emulsion separation. <i>Soft Matter</i> , 2018 , 14, 2649-2654	3.6	20
207	Recycling of PE glove waste as highly valuable products for efficient separation of oil-based contaminants from water. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18128-18133	13	20
206	Stable biocompatible cross-linked fluorescent polymeric nanoparticles based on AIE dye and itaconic anhydride. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 121, 347-53	6	20
205	Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. <i>Materials Science and Engineering C</i> , 2018 , 82, 204-209	8.3	20
204	Recent Advances and Future Prospects of Aggregation-induced Emission Carbohydrate Polymers. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600575	4.8	19
203	Polymerizable aggregation-induced emission dye for preparation of cross-linkable fluorescent nanoprobes with ultra-low critical micelle concentrations. <i>Materials Science and Engineering C</i> , 2017 , 76, 586-592	8.3	19
202	Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. <i>RSC Advances</i> , 2015 , 5, 89472-89477	3.7	19
201	Mussel-inspired PEGylated carbon nanotubes: biocompatibility evaluation and drug delivery applications. <i>Toxicology Research</i> , 2016 , 5, 1371-1379	2.6	19
200	Microorganism inspired hydrogels: hierarchical super/macro-porous structure, rapid swelling rate and high adsorption. <i>RSC Advances</i> , 2014 , 4, 32475-32481	3.7	19
199	Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization. <i>Polymer Chemistry</i> , 2013 , 4, 5720	4.9	19

198	A Liquid Gripper Based on Phase Transitional Metallic Ferrofluid. <i>Advanced Functional Materials</i> , 2021 , 31, 2100274	15.6	19	
197	Polydopamine reinforced hemostasis of a graphene oxide sponge via enhanced platelet stimulation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 174, 35-41	6	19	
196	Ultrafast microwave-assisted multicomponent tandem polymerization for rapid fabrication of AIE-active fluorescent polymeric nanoparticles and their potential utilization for biological imaging. <i>Materials Science and Engineering C</i> , 2018 , 83, 115-120	8.3	19	
195	A smart nano-V2O5/ODA-coated mesh for a co-responsive photo-induced wettability transition and ROS generation for in situ water purification. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18003-18009	13	19	
194	Synthesis and biological imaging of cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission characteristics based on the combination of RAFT polymerization and the Biginelli reaction. <i>Journal of Colloid and Interface Science</i> , 2018 , 528, 192-199	9.3	19	
193	Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. <i>ACS Macro Letters</i> , 2017 , 6, 550-555	6.6	18	
192	Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers. <i>Polymers</i> , 2018 , 10,	4.5	18	
191	Harnessing the Day-Night Rhythm of Humidity and Sunlight into Mechanical Work Using Recyclable and Reprogrammable Soft Actuators. <i>ACS Applied Materials & Distriction of Materials & D</i>	9.5	18	
190	Biocompatible fluorescent organic nanoparticles derived from glucose and polyethylenimine. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 123, 747-52	6	18	
189	CO2-Stimulated morphology transition of ABC miktoarm star terpolymer assemblies. <i>Polymer Chemistry</i> , 2017 , 8, 2833-2840	4.9	17	
188	Preparation of biocompatible and photostable PEGylated red fluorescent nanoparticles for cellular imaging. <i>Polymer Chemistry</i> , 2015 , 6, 5891-5898	4.9	17	
187	Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. <i>Polymer Chemistry</i> , 2016 , 7, 546-552	4.9	17	
186	Ultralayered coreShell metal oxide nanosheet arrays for supercapacitors with long-term electrochemical stability. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2115-2123	5.8	17	
185	Fluorescent protein-reactive polymers via one-pot combination of the Ugi reaction and RAFT polymerization. <i>Polymer Chemistry</i> , 2016 , 7, 4867-4872	4.9	17	
184	Fabrication of AIE-active amphiphilic fluorescent polymeric nanoparticles through host@uest interaction. <i>RSC Advances</i> , 2016 , 6, 54812-54819	3.7	17	
183	Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications. Macromolecular Rapid Communications, 2017, 38, 1600752	4.8	16	
182	Synthesis and self-assembly of CO2-responsive dendronized triblock copolymers. <i>Polymer Chemistry</i> , 2015 , 6, 7427-7435	4.9	16	
181	A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 2673-2688	7.3	16	

180	Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via self-polymerization of levodopa and their adsorption behavior toward Cu2+. <i>Journal of Materials Science</i> , 2016 , 51, 9625-9637	4.3	16
179	Reprocessable Thermoset Soft Actuators. <i>Angewandte Chemie</i> , 2019 , 131, 17635-17640	3.6	16
178	A smart surface prepared using the switchable superhydrophobicity of neat electrospun intrinsically electroactive polyimide fiber mats. <i>Soft Matter</i> , 2011 , 7, 10313	3.6	16
177	Crown ether modified membranes for Na+-responsive controllable emulsion separation suitable for hypersaline environments. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2684-2690	13	16
176	An Adaptable Cryptosystem Enabled by Synergies of Luminogens with Aggregation-Induced-Emission Character. <i>Advanced Materials</i> , 2020 , 32, e2004616	24	16
175	Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. <i>Materials Science and Engineering C</i> , 2018 , 83, 154-159	8.3	16
174	Polymers for Fluorescence Imaging of Formaldehyde in Living Systems via the Hantzsch Reaction. <i>ACS Macro Letters</i> , 2018 , 7, 1346-1352	6.6	16
173	One-pot synthesis of AIE based bismuth sulfide nanotheranostics for fluorescence imaging and photothermal therapy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 160, 297-304	6	15
172	Highly efficient removal of iodine ions using MXene-PDA-AgO composites synthesized by mussel-inspired chemistry. <i>Journal of Colloid and Interface Science</i> , 2020 , 567, 190-201	9.3	15
171	A poly(amidoamine) dendrimer-based nanocarrier conjugated with Angiopep-2 for dual-targeting function in treating glioma cells. <i>Polymer Chemistry</i> , 2016 , 7, 715-721	4.9	15
170	Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. <i>Journal of Colloid and Interface Science</i> , 2017 , 508, 248-25	3 9.3	15
169	Underwater bonding strength of marine mussel-inspired polymers containing DOPA-like units with amino groups. <i>RSC Advances</i> , 2012 , 2, 8919	3.7	15
168	Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. <i>Materials Science and Engineering C</i> , 2020 , 106, 110157	8.3	15
167	Universal and tunable liquid-liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. <i>Nature Communications</i> , 2021 , 12, 80	17.4	15
166	Fabrication of silica nanoparticle based polymer nanocomposites via a combination of mussel inspired chemistry and SET-LRP. <i>RSC Advances</i> , 2015 , 5, 91308-91314	3.7	14
165	Rapid preparation of branched and degradable AIE-active fluorescent organic nanoparticles via formation of dynamic phenyl borate bond. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 150, 114-120	6	14
164	Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP. <i>Cellulose</i> , 2020 , 27, 743-753	5.5	14
163	Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy. <i>ACS Applied Materials & Distriction (Control of Materials & Control of M</i>	9.5	14

162	Polymer-Decorated Filter Material for Wastewater Treatment: In Situ Ultrafast Oil/Water Emulsion Separation and Azo Dye Adsorption. <i>Langmuir</i> , 2018 , 34, 13192-13202	4	14	
161	Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. <i>ACS Macro Letters</i> , 2019 , 8, 639-645	6.6	13	
160	A polymerizable aggregation-induced emission dye for fluorescent nanoparticles: synthesis, molecular structure and application in cell imaging. <i>Polymer Chemistry</i> , 2019 , 10, 2162-2169	4.9	13	
159	High-throughput preparation of radioprotective polymers via Hantzsch's reaction for in vivo X-ray damage determination. <i>Nature Communications</i> , 2020 , 11, 6214	17.4	13	
158	A universal gene carrier platform for treatment of human prostatic carcinoma by p53 transfection. <i>Biomaterials</i> , 2014 , 35, 3110-20	15.6	13	
157	Nanodiamond based supermolecular nanocomposites: preparation and biocompatibility evaluation. <i>RSC Advances</i> , 2015 , 5, 96983-96989	3.7	13	
156	Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 144, 188-195	6	13	
155	Polymerization-induced self-assembly of liquid crystalline ABC triblock copolymers with long solvophilic chains. <i>Polymer Chemistry</i> , 2018 , 9, 3944-3951	4.9	13	
154	Liquid Crystalline Nanocolloids for the Storage of Electro-Optic Responsive Images. <i>ACS Applied Materials & ACS Applied</i> Materials & Mate	9.5	12	
153	Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. <i>RSC Advances</i> , 2015 , 5, 65884-65889	3.7	12	
152	A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. <i>Chemical Communications</i> , 2015 , 51, 16786-9	5.8	12	
151	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13437-13443	16.4	12	
150	Carnosine-Modified Fullerene as a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. <i>ACS Applied Materials & Acs Acc Applied Materials & Acc Acc Applied Materials & Acc Acc Acc Acc Acc Acc Acc Acc Acc A</i>	9.5	12	
149	Peanut Leaf-Inspired Hybrid Metal-Organic Framework with Humidity-Responsive Wettability: toward Controllable Separation of Diverse Emulsions. <i>ACS Applied Materials & Diverse</i> , 2020, 12, 6309-6318	9.5	12	
148	Photothermally induced in situ double emulsion separation by a carbon nanotube/poly(N-isopropylacrylamide) modified membrane with superwetting properties. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7677-7686	13	12	
147	Facile construction of luminescent supramolecular assemblies with aggregation-induced emission feature through supramolecular polymerization and their biological imaging. <i>Materials Science and Engineering C</i> , 2018 , 85, 233-238	8.3	12	
146	One-step synthesis of europium complexes containing polyamino acids through ring-opening polymerization and their potential for biological imaging applications. <i>Talanta</i> , 2018 , 188, 1-6	6.2	12	
145	Facile preparation of thermoresponsive fluorescent silica nanopaprticles based composites through the oxygen tolerance light-induced RAFT polymerization. <i>Journal of Molecular Liquids</i> , 2018 , 259, 179-185	6	12	

144	AIE-active self-assemblies from a catalyst-free thiol-yne click reaction and their utilization for biological imaging. <i>Materials Science and Engineering C</i> , 2018 , 92, 61-68	8.3	12
143	Biocompatible fluorescent polymeric nanoparticles based on AIE dye and phospholipid monomers. <i>RSC Advances</i> , 2014 , 4, 21588	3.7	12
142	Fabrication of water dispersible and biocompatible AIE-active fluorescent polymeric nanoparticles through a Bne-potIMannich reaction. <i>Polymer Chemistry</i> , 2017 , 8, 4746-4751	4.9	12
141	Supermolecular self assembly of AIE-active nanoprobes: fabrication and bioimaging applications. <i>RSC Advances</i> , 2015 , 5, 107355-107359	3.7	12
140	Curcumin polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. <i>Polymer Chemistry</i> , 2020 , 11, 1321-1326	4.9	12
139	Antibacterial Self-Healing Hydrogel via the Ugi Reaction. ACS Applied Polymer Materials, 2020, 2, 404-41	0 4.3	12
138	One-step preparation of branched PEG functionalized AIE-active luminescent polymeric nanoprobes. <i>Science China Chemistry</i> , 2016 , 59, 1003-1009	7.9	12
137	Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 340-351	3.5	12
136	The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000459	4.8	12
135	Surface functionalization of MXene with chitosan through in-situ formation of polyimidazoles and its adsorption properties. <i>Journal of Hazardous Materials</i> , 2021 , 419, 126220	12.8	12
134	Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing. <i>Polymers</i> , 2020 , 12,	4.5	11
133	Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. <i>Angewandte Chemie</i> , 2018 , 130, 5842-5847	3.6	11
132	Thermo- and salt-responsive poly(NIPAm-co-AAc-Brij-58) microgels: adjustable size, stability under salt stimulus, and rapid protein adsorption/desorption. <i>Colloid and Polymer Science</i> , 2016 , 294, 617-628	2.4	11
131	Lighting up the PEGylation agents via the Hantzsch reaction. <i>Polymer Chemistry</i> , 2016 , 7, 523-528	4.9	11
130	DNA as Functional Material in Organic-Based Electronics. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 90	2.6	11
129	Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization. <i>Carbohydrate Polymers</i> , 2019 , 223, 115102	10.3	11
128	Post-polymerization modification via the Biginelli reaction to prepare water-soluble polymer adhesives. <i>Polymer Chemistry</i> , 2017 , 8, 5490-5495	4.9	11
127	Tetraphenylethene end-capped polyethylenimine fluorescent nanoparticles for cell imaging. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1479-1488	3.5	11

(2020-2020)

126	High-Throughput Preparation of Antibacterial Polymers from Natural Product Derivatives via the Hantzsch Reaction. <i>IScience</i> , 2020 , 23, 100754	6.1	11
125	Aggregation-induced Emission Based Fluorogens for Mitochondria-targeted Tumor Imaging and Theranostics. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 3942-3960	4.5	11
124	Preparation of water dispersible and biocompatible nanodiamond-poly(amino acid) composites through the ring-opening polymerization. <i>Materials Science and Engineering C</i> , 2018 , 91, 496-501	8.3	11
123	Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. <i>Matter</i> , 2021 ,	12.7	11
122	Amphiphilic fluorescent copolymers via one-pot synthesis of RAFT polymerization and multicomponent Biginelli reaction and their cells imaging applications. <i>Journal of Materials Research</i> , 2019 , 34, 3011-3019	2.5	10
121	One-pot polymer modification of carbon nanotubes through mercaptoacetic acid locking imine reaction and Btacking. <i>RSC Advances</i> , 2015 , 5, 54133-54137	3.7	10
120	Electrospun Sandwich-Structure Composite Membranes for Wound Dressing Scaffolds with High Antioxidant and Antibacterial Activity. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700270	3.9	10
119	Intracellular calcium ions and morphological changes of cardiac myoblasts response to an intelligent biodegradable conducting copolymer. <i>Materials Science and Engineering C</i> , 2018 , 90, 168-179	8.3	10
118	"Two in one": Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. <i>Materials Science and Engineering C</i> , 2020 , 108, 110413	8.3	10
117	Preparation of silica nanoparticle based polymer composites via mussel inspired chemistry and their enhanced adsorption capability towards methylene blue. <i>RSC Advances</i> , 2016 , 6, 85213-85221	3.7	10
116	Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by 3D printing technology. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50114	2.9	10
115	Red aggregation-induced emission luminogen and Gd codoped mesoporous silica nanoparticles as dual-mode probes for fluorescent and magnetic resonance imaging. <i>Journal of Colloid and Interface Science</i> , 2020 , 567, 136-144	9.3	9
114	Fabrication and characterization of hyperbranched polyglycerol modified carbon nanotubes through the host-guest interactions. <i>Materials Science and Engineering C</i> , 2018 , 91, 458-465	8.3	9
113	Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. <i>Journal of Colloid and Interface Science</i> , 2018 , 509, 327-333	9.3	9
112	A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging. <i>Materials Science and Engineering C</i> , 2018 , 91, 631-637	8.3	9
111	Surface PEGylation and biological imaging of fluorescent Tb-doped layered double hydroxides through the photoinduced RAFT polymerization. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 641	-849	9
110	Biocompatible zwitterionic phosphorylcholine polymers with aggregation-induced emission feature. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 157, 166-173	6	9
109	Polyanionic self-healing hydrogels for the controlled release of cisplatin. <i>European Polymer Journal</i> , 2020 , 133, 109773	5.2	9

108	Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. <i>Materials Science and Engineering C</i> , 2019 , 94, 310-317	8.3	9
107	Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization. <i>Materials Science and Engineering C</i> , 2017 , 80, 404-410	8.3	8
106	Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater. <i>ACS Applied Materials & Description of Materials & Descripti</i>	9.5	8
105	An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging <i>RSC Advances</i> , 2020 , 10, 5704-5711	3.7	8
104	A Novel method for the preparation of fluorescent C poly(amino acid) composites and their biological imaging. <i>Journal of Colloid and Interface Science</i> , 2018 , 516, 392-397	9.3	8
103	Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment. <i>Materials Science and Engineering C</i> , 2018 , 91, 556-563	8.3	8
102	Optically Active Polymer Via One-Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 1483-1489	2.6	8
101	Anticancer Polymers via the Biginelli Reaction. ACS Macro Letters, 2020, 9, 1249-1254	6.6	8
100	Cellulose-based hydrogels regulated by supramolecular chemistry. SusMat, 2021, 1, 266-284		8
99	Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. <i>Polymer Bulletin</i> , 2017 , 74, 4525-4536	2.4	7
98	Fabrication of Lyclodextrin containing AIE-active polymeric composites through formation of dynamic phenylboronic borate and their theranostic applications. <i>Cellulose</i> , 2019 , 26, 8829-8841	5.5	7
97	Direct surface modification of nanodiamonds with ionic copolymers for fast adsorptive removal of copper ions with high efficiency. <i>Colloids and Interface Science Communications</i> , 2020 , 37, 100278	5.4	7
96	A novel strategy for fabrication of fluorescent hydroxyapatite based polymer composites through the combination of surface ligand exchange and self-catalyzed ATRP. <i>Materials Science and Engineering C</i> , 2018 , 92, 518-525	8.3	7
95	Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release. <i>Materials Science and Engineering C</i> , 2017 , 81, 57-65	8.3	7
94	Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH Sensor at Room Temperature. <i>ACS Applied Materials & Materials (ACS Applied Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (ACS Applied Materials Acs Acc Applied Materials Acc Acc Applied Materials Acc Acc Applied Materials Acc Acc Applied Materials Acc Acc Acc Acc Acc Acc Acc Acc Acc Ac</i>	9.5	7
93	DOPA-derived electroactive copolymer and IGF-1 immobilized poly(lactic-co-glycolic acid)/hydroxyapatite biodegradable microspheres for synergistic bone repair. <i>Chemical Engineering Journal</i> , 2021 , 416, 129129	14.7	7
92	Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 145, 795-801	6	7
91	Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. <i>Materials Science and Engineering C</i> , 2020 , 106, 110297	8.3	7

90	Preparation recombination human-like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts. <i>Journal of Biomedical Materials Research - Part A</i> , 2021 , 109, 346-353	5.4	7
89	Simultaneous surface functionalization and drug loading: A novel method for fabrication of cellulose nanocrystals-based pH responsive drug delivery system. <i>International Journal of Biological Macromolecules</i> , 2021 , 182, 2066-2075	7.9	7
88	Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126580	12.8	7
87	A Self-Degradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety <i>Advanced Science</i> , 2021 , e2104101	13.6	7
86	Small fluorescent albumin nanoparticles for targeted photothermal therapy via albumin-Binding protein pathways. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 181, 696-704	6	6
85	Microorganism inspired hydrogels: fermentation capacity, gelation process and pore-forming mechanism under temperature stimulus. <i>RSC Advances</i> , 2015 , 5, 91937-91945	3.7	6
84	Fabrication of photostable PEGylated polymer nanoparticles from AIE monomer and trimethylolpropane triacrylate. <i>RSC Advances</i> , 2015 , 5, 75823-75830	3.7	6
83	Structural Evolution and Formation Mechanism of the Soft Colloidal Arrays in the Core of PAAm Nanofibers by Electrospun Packing. <i>Langmuir</i> , 2017 , 33, 10291-10301	4	6
82	Buildup of Redox-Responsive Hybrid from Polyoxometalate and Redox-Active Conducting Oligomer: Its Self-Assemblies with Controllable Morphologies. <i>Chemistry - A European Journal</i> , 2017 , 23, 14860-14865	4.8	6
81	Liquid Crystalline Network Composites Reinforced by Silica Nanoparticles. <i>Materials</i> , 2014 , 7, 5356-536	53.5	6
80	Liquid-Crystalline Soft Actuators with Switchable Thermal Reprogrammability. <i>Angewandte Chemie</i> , 2020 , 132, 4808-4814	3.6	6
79	A Facile Preparation of Mussel-Inspired Poly(dopamine phosphonate-co-PEGMA)s via a One-Pot Multicomponent Polymerization System. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900533	4.8	6
78	The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. <i>Materials Science and Engineering C</i> , 2020 , 109, 110442	8.3	6
77	Direct transformation of -alkane into all- conjugated polyene via cascade dehydrogenation. <i>National Science Review</i> , 2021 , 8, nwab093	10.8	6
76	Fabrication of claviform fluorescent polymeric nanomaterials containing disulfide bond through an efficient and facile four-component Ugi reaction. <i>Materials Science and Engineering C</i> , 2021 , 118, 11143	7 ^{8.3}	6
75	A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11013-11024	13	6
74	Spatiotemporal Magnetocaloric Microenvironment for Guiding the Fate of Biodegradable Polymer Implants. <i>Advanced Functional Materials</i> , 2021 , 31, 2009661	15.6	6
73	PG-PEI-Ag NPs-Decorated Membrane for Pretreatment of Laboratory Wastewater: Simultaneous Removal of Water-Insoluble Organic Solvents and Water-Soluble Anionic Organic Pollutants. Langmuir, 2019, 35, 7680-7690	4	5

72	A magnetic solder for assembling bulk covalent adaptable network blocks. <i>Chemical Science</i> , 2020 , 11, 7694-7700	9.4	5
71	One-pot ultrafast preparation of silica quantum dots and their utilization for fabrication of luminescent mesoporous silica nanoparticles. <i>Materials Science and Engineering C</i> , 2018 , 93, 679-685	8.3	5
70	Temperature-Induced Transformation from Large Compound Vesicles to Worm-like Aggregates by ABC Triblock Copolymer. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 1338-1346	4.9	5
69	Synthesis of a Re-usable Cellobiase Enzyme Catalyst through In situ Encapsulation in Nonsurfactant Templated Sol G el Mesoporous Silica. <i>Topics in Catalysis</i> , 2012 , 55, 1247-1253	2.3	5
68	Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17250-17260	16.4	5
67	Reprogrammable 3D Liquid-Crystalline Actuators with Precisely Controllable Stepwise Actuation. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2000249	6	5
66	A novel AIE-active dye for fluorescent nanoparticles by one-pot combination of Hantzsch reaction and RAFT polymerization: synthesis, molecular structure and application in cell imaging <i>RSC Advances</i> , 2019 , 9, 32601-32607	3.7	5
65	Gold-iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. <i>Biomaterials Science</i> , 2021 , 9, 3979-3988	7.4	5
64	and Study on an Injectable Glycol Chitosan/Dibenzaldehyde-Terminated Polyethylene Glycol Hydrogel in Repairing Articular Cartilage Defects. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 607709	5.8	5
63	A near-infrared bioprobe with aggregation-induced emission feature for in vitro photodynamic therapy. <i>Dyes and Pigments</i> , 2021 , 194, 109521	4.6	5
62	Construction of ionic liquid functionalized MXene with extremely high adsorption capacity towards iodine via the combination of mussel-inspired chemistry and Michael addition reaction. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 294-304	9.3	5
61	Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture. <i>Journal of Visualized Experiments</i> , 2017 ,	1.6	4
60	New synthetic strategy for facile synthesis of functional polymers by one-pot combination of controlled radical polymerization and enzymatic reaction. <i>Polymer International</i> , 2015 , 64, 705-712	3.3	4
59	Bent-Core-Liquid-Crystalline-Based Smart Material with Switchable Photoluminescence in Two Distinct Modulating Modes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22540-22546	3.8	4
58	Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing <i>Biomacromolecules</i> , 2022 ,	6.9	4
57	Preparation and biological imaging of fluorescent hydroxyapatite nanoparticles with poly(2-ethyl-2-oxazoline) through surface-initiated cationic ring-opening polymerization. <i>Materials Science and Engineering C</i> , 2020 , 108, 110424	8.3	4
56	Click multiwalled carbon nanotubes: A novel method for preparation of carboxyl groups functionalized carbon quantum dots. <i>Materials Science and Engineering C</i> , 2020 , 108, 110376	8.3	4
55	Poly(amino acid)s-based star AIEgens for cell uptake with pH-response and chiral difference. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 202, 111687	6	4

(2021-2016)

54	Facile preparation, through Schiff base formation, of luminescent amphiphilic carbohydrate polymers with aggregation-induced emission characteristics for biological imaging. <i>RSC Advances</i> , 2016 , 6, 76011-76016	3.7	4	
53	New Method to Determine the Effect of Surface PEGylation on Cellular Uptake Efficiency of Mesoporous Silica Nanoparticles with AIEgens. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1800	0346	4	
52	3D bioprinting of an electroactive and self-healing polysaccharide hydrogels. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2021 ,	4.4	4	
51	State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. <i>International Journal of Biological Macromolecules</i> , 2021 , 186, 591-615	7.9	4	
50	Spatiotemporally dynamic therapy with shape-adaptive drug-gel for the improvement of tissue regeneration with ordered structure. <i>Bioactive Materials</i> , 2022 , 8, 165-176	16.7	4	
49	A multi-responsive self-healing hydrogel for controlled release of curcumin. <i>Polymer Chemistry</i> , 2021 , 12, 2457-2463	4.9	4	
48	Multifunctional Fluorescent Magnetic Nanoparticles: Synthesis, Characterization and Targeted Cell Imaging Applications. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 977-983	4.9	3	
47	Surface modification of fluorescent Tb-doped layered double hydroxides with hyperbranched polymers through host-guest interaction. <i>Materials Science and Engineering C</i> , 2019 , 104, 109976	8.3	3	
46	Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging. <i>Materials Science and Engineering C</i> , 2020 , 111, 110804	8.3	3	
45	Polymerization of Solid-State 2,2?-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 1518-1	52 1 7 ³	3	
44	Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 2345-2351	1.3	3	
43	Simple Method to Fabricate an Biocompatible Antibacterial Surface on a Versatile Substrate through an Antiadhesion Approach. <i>Chemistry Letters</i> , 2012 , 41, 1655-1657	1.7	3	
42	Mesoporous SiO2-Supported Pt Nanoparticles for Catalytic Application. <i>ISRN Nanomaterials</i> , 2013 , 2013, 1-7		3	
41	observation of heterogeneous catalytic organic reactions aggregation-induced emission luminogens <i>Chemical Communications</i> , 2022 ,	5.8	3	
40	Antioxidant Polymers via the Kabachnik-Fields Reaction to Control Cellular Oxidative Stress. <i>Macromolecular Bioscience</i> , 2020 , 20, e1900419	5.5	3	
39	Ultrastable Near-Infrared Aggregation-Induced Emission Nanoparticles as a Fluorescent Probe: Long-Term Tumor Monitoring and Lipid Droplet Tracking. <i>CCS Chemistry</i> , 2021 , 3, 1569-1606	7.2	3	
38	Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced emission characteristic via the thiol-ene click reaction and their potential for biological imaging. <i>Materials Science and Engineering C</i> , 2019 , 98, 293-299	8.3	3	
37	Integration of catalytic capability and pH-responsive wettability in a VxOy-based dual-mesh system: towards solving the trade-off between the separation flow rate and degradation efficiency. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5454-5467	13	3	

36	Rational Design of Carbon Layer-Decorated Metal Oxide/Nickel Cobalt Sulfide-Based Composite with Faster Energy Storage and Long Cyclic Life. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2138-2147	6.1	3
35	Fluorescent polymers via post-polymerization modification of Biginelli-type polymers for cellular protection against UV damage. <i>Polymer Chemistry</i> , 2021 , 12, 852-857	4.9	3
34	Magnetic Self-Healing Hydrogel from Difunctional Polymers Prepared via the Kabachnik-Fields Reaction <i>ACS Macro Letters</i> , 2022 , 11, 39-45	6.6	3
33	One-step reduction and simultaneous decoration on various porous substrates: toward oil filtration from water. <i>RSC Advances</i> , 2016 , 6, 86019-86024	3.7	2
32	RNAITMA Dielectrics in Organic Field Effect Transistor Memory. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 887	2.6	2
31	Accelerated Curing Speed of Ethyl Ecyanoacrylate by Polymer with Catecholamine Groups. <i>Chinese Journal of Chemistry</i> , 2012 , 30, 2275-2280	4.9	2
30	Preparation of electrospun electroactive POMA fiber mats. <i>Polymer International</i> , 2012 , 61, 213-221	3.3	2
29	Ultra-Sensitive Iron-Doped Palladium Nanocrystals with Enhanced Hydroxyl Radical Generation for Chemo-/Chemodynamic Nanotherapy. <i>Advanced Functional Materials</i> ,2107518	15.6	2
28	Intrinsic hydroquinone-functionalized aggregation-induced emission core shows redox and pH sensitivity. <i>Communications Chemistry</i> , 2021 , 4,	6.3	2
27	Antifungal Polymer Containing Menthoxy Triazine. ACS Applied Polymer Materials, 2021, 3, 3702-3707	4.3	2
26	Combating Biofilms by a Self-Adapting Drug Loading Hydrogel ACS Applied Bio Materials, 2021, 4, 6219	9-462226	2
25	Hetero-nanostructures constructed by 2D porous metal oxide/hydroxide nanosheets supported on 1D hollow Co9S8 nanowires for hybrid supercapacitors with high areal capacity. <i>Inorganic Chemistry Frontiers</i> ,	6.8	2
24	Porously nanostructured MnO/C composites directed from polydopamine as high-performance supercapacitor electrodes. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 5781-5789	2.1	2
23	Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2	0 0 0856	3 ²
22	Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy. <i>Nano Research</i> ,1	10	2
21	Improved bacterial nanocellulose production from glucose without the loss of quality by evaluating thirteen agitator configurations at low speed. <i>Microbial Biotechnology</i> , 2019 , 12, 1387-1402	6.3	1
20	RAI3 knockdown enhances osteogenic differentiation of bone marrow mesenchymal stem cells via STAT3 signaling pathway. <i>Biochemical and Biophysical Research Communications</i> , 2020 , 524, 516-522	3.4	1
19	Nanostructured Conducting Polymers for Sensor Development 2013 , 489-521		1

High Temperature Hysteresis in Bio-Organic Field-Effect Transistor based on DNA-CTMA as Gate 18 Dielectric. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], **2017**, 30, 513-5 17^{7} Green Production of Biodegradable Mulch Films for Effective Weed Control. ACS Omega, 2021, 6, 32327-323331 17 In Situ Visualization of Reversible Diels-Alder Reactions with Self-Reporting Aggregation-Induced 16 9.5 1 Emission Luminogens.. ACS Applied Materials & Distriction Luminogens.. ACS Applied Materials & Distriction Luminogens.. 4CS Applied Materials & Distriction Luminogens.. ACS Applied Mat Novel superwetting nanofibrous skins for removing stubborn soluble oil in emulsified wastewater. 15 13 Journal of Materials Chemistry A, Revealing the Distribution of Aggregation-Induced Emission Nanoparticles via Dual-Modality 7.8 14 1 Imaging with Fluorescence and Mass Spectrometry. Research, 2021, 2021, 9784053 Catechol Moiety Integrated Tri-Aryl Type AlEgen for Visual and Quantitative Boronic Acid 4.8 13 Detection. Chemistry - A European Journal, 2021, 28, e202103351 A Mitochondria-targeted AIEgen Labelled with F for Breast Cancer Cell Imaging and Therapy. 12 O 4.5 Chemistry - an Asian Journal, **2021**, 16, 3963-3969 Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low 11 2.5 charge transfer resistance. Frontiers of Materials Science, 2020, 14, 450-458 Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging. Chinese Journal of Polymer Science 10 Ο 3.5 (English Edition),1 A Dually Charged Membrane for Seawater Utilization: Combining Marine Pollution Remediation and Desalination by Simultaneous Removal of Polluted Dispersed Oil, Surfactants, and Ions. ACS 9 9.5 Applied Materials & Interfaces, 2021, 13, 48171-48178 Antioxidant Polymers via the Ugi Reaction for In Vivo Protection of UV-Induced Oxidative Stress. 8 9.6 O Chemistry of Materials, 2022, 34, 2645-2654 Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal 3.6 Expression and Liquid Permeation. Angewandte Chemie, 2020, 132, 13539-13545 6 Aggregation-Induced Emission Polymers 2017, 1-60 Water soluble photocurable carboxymethyl cellulose-based bioactive hydrogels for digital light 2.9 5 processing. Journal of Applied Polymer Science, 52155 Recent development and advances in the fabrication and biomedical applications of 7.8 nanoparticle-based drug delivery systems for metformin. Materials Chemistry Frontiers, AlEgens with cyano-modification in different sites: Potential Meta-site effectin 4.6 mechanochromism behavior. Dyes and Pigments, 2021, 198, 109939 A Liquid Gripper Based on Phase Transitional Metallic Ferrofluid (Adv. Funct. Mater. 32/2021). 15.6 Advanced Functional Materials, 2021, 31, 2170232 Novel Binary Ni-Based Mixed Metal-Organic Framework Nanosheets Materials and Their High 3.9 Optical Power Limiting.. ACS Omega, 2022, 7, 10429-10437