

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/454550/publications.pdf Version: 2024-02-01

YEN WEI

#	Article	IF	CITATIONS
1	Oneâ€Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small, 2009, 5, 2349-2370.	5.2	801
2	Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Materials, 2014, 13, 36-41.	13.3	670
3	Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules. Biomacromolecules, 2011, 12, 2894-2901.	2.6	578
4	Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8, 16819-16840.	2.8	509
5	Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale, 2015, 7, 11486-11508.	2.8	485
6	Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry, 2014, 5, 1519-1528.	1.9	483
7	Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale, 2012, 4, 5581.	2.8	476
8	An Injectable, Selfâ€Healing Hydrogel to Repair the Central Nervous System. Advanced Materials, 2015, 27, 3518-3524.	11.1	471
9	A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicology Research, 2012, 1, 62-68.	0.9	427
10	3D printing of bone tissue engineering scaffolds. Bioactive Materials, 2020, 5, 82-91.	8.6	370
11	Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. Journal of the American Chemical Society, 2016, 138, 2118-2121.	6.6	334
12	Highly Efficient Selfâ€Healable and Dual Responsive Celluloseâ€Based Hydrogels for Controlled Release and 3D Cell Culture. Advanced Functional Materials, 2017, 27, 1703174.	7.8	325
13	Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Advanced Functional Materials, 2017, 27, 1603623.	7.8	312
14	A magnetic self-healing hydrogel. Chemical Communications, 2012, 48, 9305.	2.2	283
15	CO ₂ â€Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. Angewandte Chemie - International Edition, 2015, 54, 8934-8938.	7.2	276
16	Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polymer Chemistry, 2012, 3, 3235.	1.9	266
17	Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. Journal of Materials Chemistry B, 2015, 3, 3476-3482.	2.9	265
18	Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chemical Science, 2014, 5, 3486-3492.	3.7	258

#	Article	IF	CITATIONS
19	Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials, 2007, 28, 1741-1751.	5.7	252
20	A Novel Mechanochromic and Photochromic Polymer Film: When Rhodamine Joins Polyurethane. Advanced Materials, 2015, 27, 6469-6474.	11.1	252
21	Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. Journal of Colloid and Interface Science, 2017, 499, 170-179.	5.0	240
22	A durable monolithic polymer foam for efficient solar steam generation. Chemical Science, 2018, 9, 623-628.	3.7	235
23	Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polymer Chemistry, 2014, 5, 399-404.	1.9	229
24	Polymerizable aggregation-induced emission dye-based fluorescent nanoparticles for cell imaging applications. Polymer Chemistry, 2014, 5, 356-360.	1.9	216
25	Regional Shape Control of Strategically Assembled Multishape Memory Vitrimers. Advanced Materials, 2016, 28, 156-160.	11.1	213
26	Recent Advances and Progress on Melanin-like Materials and Their Biomedical Applications. Biomacromolecules, 2018, 19, 1858-1868.	2.6	209
27	Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. ACS Applied Materials & Interfaces, 2013, 5, 1943-1947.	4.0	196
28	Recent progress and advances in the environmental applications of MXene related materials. Nanoscale, 2020, 12, 3574-3592.	2.8	186
29	Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. Journal of Materials Chemistry B, 2017, 5, 194-206.	2.9	183
30	Interaction of tannic acid with carbon nanotubes: enhancement of dispersibility and biocompatibility. Toxicology Research, 2015, 4, 160-168.	0.9	181
31	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie - International Edition, 2018, 57, 5740-5745.	7.2	180
32	Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale, 2020, 12, 1325-1338.	2.8	179
33	Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chemical Science, 2017, 8, 724-733.	3.7	178
34	Functional epoxy vitrimers and composites. Progress in Materials Science, 2021, 120, 100710.	16.0	178
35	Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicology Research, 2013, 2, 335.	0.9	175
36	Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. Applied Surface Science, 2018, 459, 588-595.	3.1	170

#	Article	IF	CITATIONS
37	Cellular responses of aniline oligomers: a preliminary study. Toxicology Research, 2012, 1, 201.	0.9	166
38	Preparation of polyethylene polyamine@tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 92-101.	2.7	155
39	A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Materials Science and Engineering C, 2017, 81, 416-421.	3.8	153
40	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Interfaces, 2017, 9, 33660-33673.	4.0	150
41	Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Materials Science and Engineering C, 2017, 77, 972-977.	3.8	145
42	Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Materials Science and Engineering C, 2017, 80, 578-583.	3.8	141
43	Synthesis of polyacrylamide immobilized molybdenum disulfide (MoS 2 @PDA@PAM) composites via mussel-inspired chemistry and surface-initiated atom transfer radical polymerization for removal of copper (II) ions. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86, 174-184.	2.7	140
44	Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting Diodes over 750 nm. Chemistry of Materials, 2017, 29, 4775-4782.	3.2	138
45	Core–shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications. Journal of Materials Chemistry, 2011, 21, 2823-2840.	6.7	137
46	Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nature Communications, 2019, 10, 3165.	5.8	136
47	Antioil Ag ₃ PO ₄ Nanoparticle/Polydopamine/Al ₂ O ₃ Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 8019-8028.	3.2	134
48	Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 2018, 30, e1801103.	11.1	133
49	Cytotoxicity study of polyethylene glycol derivatives. RSC Advances, 2017, 7, 18252-18259.	1.7	132
50	Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging. Materials Science and Engineering C, 2017, 80, 708-714.	3.8	131
51	Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Advances, 2013, 3, 23432.	1.7	130
52	Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical Science, 2016, 7, 4741-4747.	3.7	128
53	Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. Polymer Chemistry, 2014, 5, 1049-1056.	1.9	127
54	Self-Healing Hydrogel with a Double Dynamic Network Comprising Imine and Borate Ester Linkages. Chemistry of Materials, 2019, 31, 5576-5583.	3.2	126

#	Article	IF	CITATIONS
55	Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. International Journal of Biological Macromolecules, 2019, 136, 476-485.	3.6	126
56	Multicomponent Combinatorial Polymerization via the Biginelli Reaction. Journal of the American Chemical Society, 2016, 138, 8690-8693.	6.6	125
57	Preparation of AlE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Materials Science and Engineering C, 2017, 80, 411-416.	3.8	125
58	Cross-linkable aggregation induced emission dye based red fluorescent organic nanoparticles and their cell imaging applications. Polymer Chemistry, 2013, 4, 5060.	1.9	124
59	Surface modification and drug delivery applications of MoS2 nanosheets with polymers through the combination of mussel inspired chemistry and SET-LRP. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 205-213.	2.7	122
60	A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry?. Polymer Chemistry, 2013, 4, 5395.	1.9	119
61	The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polymer Chemistry, 2015, 6, 8233-8239.	1.9	118
62	Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale, 2016, 8, 4452-4457.	2.8	118
63	Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Materials Chemistry Frontiers, 2017, 1, 807-822.	3.2	118
64	One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 3333-3339.	4.0	117
65	Facile preparation and cell imaging applications of fluorescent organic nanoparticles that combine AIE dye and ring-opening polymerization. Polymer Chemistry, 2014, 5, 318-322.	1.9	115
66	A novel biodegradable self-healing hydrogel to induce blood capillary formation. NPG Asia Materials, 2017, 9, e363-e363.	3.8	114
67	Facile fabrication and cell imaging applications of aggregation-induced emission dye-based fluorescent organic nanoparticles. Polymer Chemistry, 2013, 4, 4317.	1.9	113
68	Injectable and Self-Healing Chitosan Hydrogel Based on Imine Bonds: Design and Therapeutic Applications. International Journal of Molecular Sciences, 2018, 19, 2198.	1.8	110
69	Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nature Communications, 2018, 9, 1906.	5.8	108
70	Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Materials, 2019, 11, .	3.8	108
71	Volatile-Organic-Compound-Intercepting Solar Distillation Enabled by a Photothermal/Photocatalytic Nanofibrous Membrane with Dual-Scale Pores. Environmental Science & Technology, 2020, 54, 9025-9033.	4.6	108
72	Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Science Advances, 2020, 6, eaay8606.	4.7	108

#	Article	IF	CITATIONS
73	Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chemical Engineering Journal, 2017, 308, 527-534.	6.6	107
74	Synthesis of Biodegradable and Electroactive Tetraaniline Grafted Poly(ester amide) Copolymers for Bone Tissue Engineering. Biomacromolecules, 2012, 13, 2881-2889.	2.6	106
75	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3, 2716.	1.9	105
76	Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. Materials Science and Engineering C, 2017, 79, 563-569.	3.8	105
77	Direct encapsulation of AlE-active dye with \hat{l}^2 cyclodextrin terminated polymers: Self-assembly and biological imaging. Materials Science and Engineering C, 2017, 78, 862-867.	3.8	102
78	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie - International Edition, 2020, 59, 4778-4784.	7.2	102
79	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	5.2	101
80	Morphology Evolution of Polymeric Assemblies Regulated with Fluoro-Containing Mesogen in Polymerization-Induced Self-Assembly. Macromolecules, 2017, 50, 8192-8201.	2.2	100
81	Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chemical Engineering Journal, 2018, 337, 82-90.	6.6	99
82	Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. ACS Applied Materials & Interfaces, 2020, 12, 55659-55674.	4.0	99
83	Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. Journal of Materials Chemistry A, 2017, 5, 6740-6746.	5.2	98
84	Self-Adapting Hydrogel to Improve the Therapeutic Effect in Wound-Healing. ACS Applied Materials & Interfaces, 2018, 10, 26046-26055.	4.0	98
85	Antibacterial Adhesion of Borneol-Based Polymer via Surface Chiral Stereochemistry. ACS Applied Materials & Interfaces, 2014, 6, 19371-19377.	4.0	97
86	PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polymer Chemistry, 2014, 5, 689-693.	1.9	97
87	In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 1115-1123.	2.6	97
88	Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications. Materials Science and Engineering C, 2016, 66, 215-220.	3.8	97
89	Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: a new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. Journal of Materials Chemistry, 2012, 22, 12723.	6.7	95
90	PEGylation of fluoridated hydroxyapatite (FAp):Ln3+ nanorods for cell imaging. Polymer Chemistry, 2013, 4, 4120.	1.9	95

#	Article	IF	CITATIONS
91	Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosensors and Bioelectronics, 2017, 87, 466-472.	5.3	94
92	Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polymer Chemistry, 2014, 5, 2704-2708.	1.9	93
93	Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polymer Chemistry, 2017, 8, 537-544.	1.9	93
94	Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6, 607-612.	1.9	91
95	Tailoring the Multicompartment Nanostructures of Fluoro-Containing ABC Triblock Terpolymer Assemblies via Polymerization-Induced Self-Assembly. Macromolecules, 2017, 50, 8212-8220.	2.2	91
96	â€~One pot' synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik–Fields reaction on the stage of polymer chemistry. Polymer Chemistry, 2014, 5, 1857-1862.	1.9	90
97	A novel method for preparing AIE dye based cross-linked fluorescent polymeric nanoparticles for cell imaging. Polymer Chemistry, 2014, 5, 683-688.	1.9	90
98	Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials, 2017, 133, 20-28.	5.7	90
99	Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. Journal of Colloid and Interface Science, 2018, 513, 198-204.	5.0	90
100	Reprocessable Thermoset Soft Actuators. Angewandte Chemie - International Edition, 2019, 58, 17474-17479.	7.2	90
101	A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. Materials Science and Engineering C, 2019, 94, 270-278.	3.8	90
102	UV-curable nanocasting technique to prepare bio-mimetic super-hydrophobic non-fluorinated polymeric surfaces for advanced anticorrosive coatings. Polymer Chemistry, 2013, 4, 926-932.	1.9	89
103	Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomaterialia, 2014, 10, 5074-5080.	4.1	89
104	Low-Tortuosity Water Microchannels Boosting Energy Utilization for High Water Flux Solar Distillation. Environmental Science & Technology, 2020, 54, 5150-5158.	4.6	89
105	Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity. Nature Communications, 2018, 9, 3799.	5.8	86
106	Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. Polymer Chemistry, 2015, 6, 1786-1792.	1.9	85
107	Thermally Triggered in Situ Assembly of Gold Nanoparticles for Cancer Multimodal Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 10453-10460.	4.0	85
108	Magnetic Hydrogel with Optimally Adaptive Functions for Breast Cancer Recurrence Prevention. Advanced Healthcare Materials, 2019, 8, e1900203.	3.9	85

#	Article	IF	CITATIONS
109	Durable liquid-crystalline vitrimer actuators. Chemical Science, 2019, 10, 3025-3030.	3.7	82
110	Janus membrane decorated <i>via</i> a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria. Journal of Materials Chemistry A, 2019, 7, 4941-4949.	5.2	82
111	Aggregation-induced emission material based fluorescent organic nanoparticles: facile PEGylation and cell imaging applications. RSC Advances, 2013, 3, 9633.	1.7	81
112	Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. Nature Communications, 2017, 8, 1559.	5.8	81
113	Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioactive Materials, 2021, 6, 137-145.	8.6	81
114	Combining mussel-inspired chemistry and the Michael addition reaction to disperse carbon nanotubes. RSC Advances, 2012, 2, 12153.	1.7	79
115	Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation. Journal of Materials Chemistry A, 2014, 2, 20439-20443.	5.2	78
116	Synthesis of Multifunctional Polymers through the Ugi Reaction for Protein Conjugation. Macromolecules, 2014, 47, 5607-5612.	2.2	76
117	Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14719.	5.2	75
118	Breathing Demulsification: A Three-Dimensional (3D) Free-Standing Superhydrophilic Sponge. ACS Applied Materials & Interfaces, 2015, 7, 22264-22271.	4.0	73
119	Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials. Journal of Controlled Release, 2017, 259, 40-52.	4.8	73
120	A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Scientific Reports, 2015, 5, 9688.	1.6	72
121	In Vitro Studies on Regulation of Osteogenic Activities by Electrical Stimulus on Biodegradable Electroactive Polyelectrolyte Multilayers. Biomacromolecules, 2014, 15, 3146-3157.	2.6	70
122	Fine-tuning the mechanofluorochromic properties of benzothiadiazole-cored cyano-substituted diphenylethene derivatives through D–A effect. Journal of Materials Chemistry C, 2014, 2, 8932-8938.	2.7	69
123	Mussel inspired modification of carbon nanotubes using RAFT derived stimuli-responsive polymers. RSC Advances, 2013, 3, 21817.	1.7	67
124	Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multi-scale structures mimicking the surface of Xanthosoma sagittifolium leaf. Journal of Materials Chemistry, 2012, 22, 15845.	6.7	66
125	Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine. Journal of Colloid and Interface Science, 2018, 511, 383-391.	5.0	66
126	Stimulus responsive cross-linked AIE-active polymeric nanoprobes: fabrication and biological imaging application. Polymer Chemistry, 2015, 6, 8214-8221.	1.9	65

#	Article	IF	CITATIONS
127	Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. Journal of Colloid and Interface Science, 2017, 505, 168-177.	5.0	64
128	Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. Journal of Colloid and Interface Science, 2018, 519, 137-144.	5.0	64
129	Promotion of Color-Changing Luminescent Hydrogels from Thermo to Electrical Responsiveness toward Biomimetic Skin Applications. ACS Nano, 2021, 15, 10415-10427.	7.3	64
130	A novel poly(Î ³ -glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. Materials Science and Engineering C, 2015, 48, 533-540.	3.8	63
131	Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics, 2021, 11, 6407-6426.	4.6	63
132	Aggregation-induced emission dye based luminescent silica nanoparticles: facile preparation, biocompatibility evaluation and cell imaging applications. RSC Advances, 2014, 4, 10060.	1.7	62
133	Fluorescent nanoparticles from starch: Facile preparation, tunable luminescence and bioimaging. Carbohydrate Polymers, 2015, 121, 49-55.	5.1	62
134	Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution. Polymer Chemistry, 2015, 6, 5876-5883.	1.9	62
135	Lotus- and Mussel-Inspired PDA–PET/PTFE Janus Membrane: Toward Integrated Separation of Light and Heavy Oils from Water. ACS Applied Materials & Interfaces, 2019, 11, 20545-20556.	4.0	62
136	High Throughput Preparation of UV-Protective Polymers from Essential Oil Extracts via the Biginelli Reaction. Journal of the American Chemical Society, 2018, 140, 6865-6872.	6.6	61
137	Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Materials Science and Engineering C, 2018, 84, 60-66.	3.8	61
138	Asymmetric superwetting configuration of Janus membranes based on thiol–ene clickable silane nanospheres enabling on-demand and energy-efficient oil–water remediation. Journal of Materials Chemistry A, 2019, 7, 10047-10057.	5.2	61
139	Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 14315-14322.	4.0	60
140	Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate. ACS Applied Materials & Interfaces, 2016, 8, 28522-28528.	4.0	59
141	A facile strategy for fabrication of aggregation-induced emission (AIE) active fluorescent polymeric nanoparticles (FPNs) via post modification of synthetic polymers and their cell imaging. Materials Science and Engineering C, 2017, 79, 590-595.	3.8	59
142	Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Advances, 2015, 5, 68430-68438.	1.7	58
143	From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation. Polymer Chemistry, 2015, 6, 4940-4945.	1.9	58
144	Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Advances, 2015, 5, 82503-82512.	1.7	58

#	Article	IF	CITATIONS
145	High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomaterialia, 2015, 11, 183-190.	4.1	58
146	Fabrication and biological imaging application of AIE-active luminescent starch based nanoprobes. Carbohydrate Polymers, 2016, 142, 38-44.	5.1	58
147	One-Step Breaking and Separating Emulsion by Tungsten Oxide Coated Mesh. ACS Applied Materials & Interfaces, 2015, 7, 8108-8113.	4.0	57
148	Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Science Advances, 2022, 8, .	4.7	57
149	Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. Journal of Materials Chemistry C, 2014, 2, 816-820.	2.7	56
150	A Liquid Gripper Based on Phase Transitional Metallic Ferrofluid. Advanced Functional Materials, 2021, 31, 2100274.	7.8	56
151	Ultra-stable biocompatible cross-linked fluorescent polymeric nanoparticles using AIE chain transfer agent. Polymer Chemistry, 2014, 5, 3758.	1.9	55
152	A rather facile strategy for the fabrication of PEGylated AIE nanoprobes. Polymer Chemistry, 2015, 6, 5288-5294.	1.9	55
153	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. Journal of Materials Chemistry A, 2017, 5, 15822-15827.	5.2	55
154	Surface functionalization of MXene with chitosan through in-situ formation of polyimidazoles and its adsorption properties. Journal of Hazardous Materials, 2021, 419, 126220.	6.5	55
155	Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. Journal of Materials Chemistry, 2012, 22, 24558.	6.7	54
156	Facile fabrication of luminescent hyaluronic acid with aggregation-induced emission through formation of dynamic bonds and their theranostic applications. Materials Science and Engineering C, 2018, 91, 201-207.	3.8	54
157	Aggregation Induced Emission Fluorogens Based Nanotheranostics for Targeted and Imagingâ€Guided Chemoâ€Photothermal Combination Therapy. Small, 2016, 12, 6568-6575.	5.2	53
158	Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly. Macromolecules, 2017, 50, 9750-9759.	2.2	53
159	A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. Journal of Colloid and Interface Science, 2018, 532, 767-773.	5.0	53
160	Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyurea. Polymer Chemistry, 2012, 3, 2209.	1.9	52
161	Biocompatibility evaluation of aniline oligomers with different end-functional groups. Toxicology Research, 2013, 2, 427.	0.9	52
162	Towards development of a versatile and efficient strategy for fabrication of GO based polymer nanocomposites. Polymer Chemistry, 2015, 6, 7211-7218.	1.9	52

#	Article	IF	CITATIONS
163	Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel. Colloids and Surfaces B: Biointerfaces, 2017, 149, 168-173.	2.5	52
164	Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. Polymer Chemistry, 2014, 5, 2695-2699.	1.9	51
165	Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing. Materials Science and Engineering C, 2017, 81, 303-313.	3.8	51
166	Semiâ€Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2018, 39, e1700840.	2.0	51
167	Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules, 2022, 23, 1622-1632.	2.6	51
168	Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Letters, 2015, 4, 128-132.	2.3	50
169	Electrospinning of Celluloseâ€Based Fibers From NaOH/Urea Aqueous System. Macromolecular Materials and Engineering, 2010, 295, 695-700.	1.7	49
170	From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules, 2014, 47, 4676-4683.	2.2	48
171	The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes. Polymer Chemistry, 2015, 6, 509-513.	1.9	48
172	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale, 2016, 8, 18558-18564.	2.8	46
173	Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. ACS Macro Letters, 2015, 4, 1189-1193.	2.3	45
174	Metal–organic framework derived petal-like Co ₃ O ₄ @CoNi ₂ S ₄ hybrid on carbon cloth with enhanced performance for supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 1428-1436.	3.0	45
175	A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Advances, 2014, 4, 32544-32548.	1.7	44
176	Ultrabright and biocompatible AIE dye based zwitterionic polymeric nanoparticles for biological imaging. RSC Advances, 2014, 4, 35137-35143.	1.7	44
177	A Selfâ€Ðegradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety. Advanced Science, 2022, 9, e2104101.	5.6	44
178	One-pot synthesis and biological imaging application of an amphiphilic fluorescent copolymer via a combination of RAFT polymerization and Schiff base reaction. Polymer Chemistry, 2015, 6, 2133-2138.	1.9	43
179	Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9133-9145.	5.2	43
180	A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging. Talanta, 2017, 174, 803-808.	2.9	43

#	Article	IF	CITATIONS
181	Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. Journal of Materials Science, 2017, 52, 504-518.	1.7	43
182	Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging. ACS Sustainable Chemistry and Engineering, 2017, 5, 9955-9964.	3.2	42
183	Mussel-inspired preparation of layered double hydroxides based polymer composites for removal of copper ions. Journal of Colloid and Interface Science, 2019, 533, 416-427.	5.0	42
184	Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention. Biomaterials, 2015, 47, 13-19.	5.7	41
185	Effect of alkyl length dependent crystallinity for the mechanofluorochromic feature of alkyl phenothiazinyl tetraphenylethenyl acrylonitrile derivatives. Journal of Materials Chemistry C, 2016, 4, 4786-4791.	2.7	41
186	Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing. Applied and Environmental Microbiology, 2016, 82, 4663-4672.	1.4	41
187	Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications. Materials Science and Engineering C. 2017, 72, 352-358.	3.8	41
188	A versatile CeO2/Co3O4 coated mesh for food wastewater treatment: Simultaneous oil removal and UV catalysis of food additives. Water Research, 2018, 137, 144-152.	5.3	41
189	A bifunctional Î ² -MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. Journal of Colloid and Interface Science, 2020, 579, 412-424.	5.0	41
190	CO2-switchable drug release from magneto-polymeric nanohybrids. Polymer Chemistry, 2015, 6, 2319-2326.	1.9	40
191	Ultrafast Preparation of AlEâ€Active Fluorescent Organic Nanoparticles via a "Oneâ€Pot― Microwaveâ€Assisted Kabachnik–Fields Reaction. Macromolecular Rapid Communications, 2016, 37, 1754-1759.	2.0	40
192	Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. Science China Chemistry, 2016, 59, 1541-1547.	4.2	40
193	A powerful "one-pot―tool for fabrication of AIE-active luminescent organic nanoparticles through the combination of RAFT polymerization and multicomponent reactions. Materials Chemistry Frontiers, 2017, 1, 1051-1058.	3.2	40
194	Postpolymerization Modification of Poly(dihydropyrimidin-2(1 <i>H</i>)-thione)s via the Thiourea–Haloalkane Reaction to Prepare Functional Polymers. ACS Macro Letters, 2015, 4, 843-847.	2.3	39
195	Fabrication of cross-linked fluorescent polymer nanoparticles and their cell imaging applications. Journal of Materials Chemistry C, 2015, 3, 1854-1860.	2.7	39
196	Marrying mussel inspired chemistry with SET‣RP: A novel strategy for surface functionalization of carbon nanotubes. Journal of Polymer Science Part A, 2015, 53, 1872-1879.	2.5	39
197	Red fluorescent cross-linked glycopolymer nanoparticles based on aggregation induced emission dyes for cell imaging. Polymer Chemistry, 2015, 6, 1360-1366.	1.9	39
198	Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH ₃ NH ₃ PbI ₃ perovskite coating. Journal of Materials Chemistry A, 2017, 5, 7285-7290.	5.2	39

#	Article	IF	CITATIONS
199	Topological engineering of amphiphilic copolymers <i>via</i> RAFT dispersion copolymerization of benzyl methacrylate and 2-(perfluorooctyl)ethyl methacrylate for polymeric assemblies with tunable nanostructures. Polymer Chemistry, 2018, 9, 912-919.	1.9	39
200	PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. Carbohydrate Polymers, 2018, 184, 445-452.	5.1	39
201	Direct Surface Functionalization of Cellulose Nanocrystals with Hyperbranched Polymers through the Anionic Polymerization for pH-Responsive Intracellular Drug Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 19202-19212.	3.2	39
202	An Adaptable Cryptosystem Enabled by Synergies of Luminogens with Aggregationâ€Inducedâ€Emission Character. Advanced Materials, 2020, 32, e2004616.	11.1	39
203	Polymer actuators based on covalent adaptable networks. Polymer Chemistry, 2020, 11, 5297-5320.	1.9	39
204	One-Pot Cascade Synthetic Strategy: A Smart Combination of Chemoenzymatic Transesterification and Raft Polymerization. ACS Macro Letters, 2012, 1, 1224-1227.	2.3	38
205	A multicomponent polymerization system: click–chemoenzymatic–ATRP in one-pot for polymer synthesis. Polymer Chemistry, 2013, 4, 466-469.	1.9	38
206	Nonspherical Liquid Crystalline Assemblies with Programmable Shape Transformation. ACS Macro Letters, 2018, 7, 956-961.	2.3	38
207	A dual functional Janus membrane combining superwettability with electrostatic force for controllable anionic/cationic emulsion separation and <i>in situ</i> surfactant removal. Journal of Materials Chemistry A, 2019, 7, 27156-27163.	5.2	38
208	Polydopamine reinforced hemostasis of a graphene oxide sponge via enhanced platelet stimulation. Colloids and Surfaces B: Biointerfaces, 2019, 174, 35-41.	2.5	38
209	Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, 2021, 4, 3354-3365.	5.0	38
210	Renewable itaconic acid based cross-linked fluorescent polymeric nanoparticles for cell imaging. Polymer Chemistry, 2014, 5, 5885-5889.	1.9	37
211	Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic- <i>co</i> -glycolic acid)/Polypyrrole Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24445-24454.	4.0	37
212	Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a "one-pot―multicomponent reaction. Carbohydrate Polymers, 2016, 152, 189-195.	5.1	37
213	Smart Nylon Membranes with pHâ€Responsive Wettability: Highâ€Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactantâ€Stabilized Emulsions. Advanced Materials Interfaces, 2018, 5, 1801179.	1.9	37
214	Synthesis and Thermo-/pH- Dual Responsive Properties of Poly(amidoamine) Dendronized Poly(2-hydroxyethyl) Methacrylate. Macromolecules, 2010, 43, 4314-4323.	2.2	36
215	Targeted Synthesis of a 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules. Journal of Physical Chemistry C, 2012, 116, 26431-26435.	1.5	36
216	Luminescence tunable fluorescent organic nanoparticles from polyethyleneimine and maltose: facile preparation and bioimaging applications. RSC Advances, 2014, 4, 22294.	1.7	36

#	Article	IF	CITATIONS
217	Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. PLoS ONE, 2016, 11, e0154924.	1.1	36
218	A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydrate Polymers, 2017, 174, 723-730.	5.1	36
219	Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance. Journal of Hazardous Materials, 2021, 420, 126580.	6.5	36
220	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Science China Life Sciences, 2018, 61, 448-456.	2.3	35
221	Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials, 2018, 174, 31-40.	5.7	35
222	High-throughput preparation of radioprotective polymers via Hantzsch's reaction for in vivo X-ray damage determination. Nature Communications, 2020, 11, 6214.	5.8	35
223	Mussel inspired preparation of highly dispersible and biocompatible carbon nanotubes. RSC Advances, 2015, 5, 25329-25336.	1.7	34
224	Photo-responsive liquid crystalline vitrimer containing oligoanilines. Chinese Chemical Letters, 2017, 28, 2139-2142.	4.8	34
225	Fluorescent Glycopolymer Nanoparticles Based on Aggregationâ€Induced Emission Dyes: Preparation and Bioimaging Applications. Macromolecular Chemistry and Physics, 2015, 216, 678-684.	1.1	33
226	Biomimic modification of graphene oxide. New Journal of Chemistry, 2015, 39, 8172-8178.	1.4	33
227	Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization. Applied Surface Science, 2017, 399, 499-505.	3.1	33
228	Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch reaction and RAFT polymerization and their cell imaging applications. Polymer Chemistry, 2017, 8, 4805-4810.	1.9	33
229	Synthesis of RGO/Cu ₈ S ₅ /PPy Composite Nanosheets with Enhanced Peroxidase-Like Activity for Sensitive Colorimetric Detection of H ₂ O ₂ and Phenol. Particle and Particle Systems Characterization, 2017, 34, 1600233.	1.2	33
230	Dynamic agent of an injectable and self-healing drug-loaded hydrogel for embolization therapy. Colloids and Surfaces B: Biointerfaces, 2018, 172, 601-607.	2.5	33
231	Facile fabrication of hydrogel coated membrane for controllable and selective oil-in-water emulsion separation. Soft Matter, 2018, 14, 2649-2654.	1.2	32
232	Crown ether modified membranes for Na ⁺ -responsive controllable emulsion separation suitable for hypersaline environments. Journal of Materials Chemistry A, 2020, 8, 2684-2690.	5.2	32
233	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
234	Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5699-5708.	4.0	32

#	Article	IF	CITATIONS
235	A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells. Journal of Materials Chemistry B, 2020, 8, 2673-2688.	2.9	31
236	Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. Journal of Colloid and Interface Science, 2020, 567, 190-201.	5.0	31
237	A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution. Journal of Materials Chemistry A, 2021, 9, 11013-11024.	5.2	31
238	Celluloseâ€based hydrogels regulated by supramolecular chemistry. SusMat, 2021, 1, 266-284.	7.8	31
239	Facile Oneâ€Pot Synthesis of New Functional Polymers through Multicomponent Systems. Macromolecular Chemistry and Physics, 2014, 215, 486-492.	1.1	30
240	Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids and Surfaces B: Biointerfaces, 2014, 116, 739-744.	2.5	30
241	Controllable multicolor switching of oligopeptide-based mechanochromic molecules: from gel phase to solid powder. Journal of Materials Chemistry C, 2015, 3, 3399-3405.	2.7	30
242	Toward the development of versatile functionalized carbon nanotubes. RSC Advances, 2015, 5, 38316-38323.	1.7	30
243	A biocompatible cross-linked fluorescent polymer prepared via ring-opening PEGylation of 4-arm PEG-amine, itaconic anhydride, and an AIE monomer. Polymer Chemistry, 2015, 6, 3634-3640.	1.9	30
244	Carnosine-Modified Fullerene as a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. ACS Applied Materials & Interfaces, 2020, 12, 16104-16113.	4.0	30
245	Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 7987-7996.	4.0	30
246	Self-assembled tetraoctylammonium bromide as an electron-injection layer for cathode-independent high-efficiency polymer light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 8715.	6.7	29
247	Fabrication of amphiphilic fluorescent nanoparticles with an AIE feature via a one-pot clickable mercaptoacetic acid locking imine reaction: synthesis, self-assembly and bioimaging. Polymer Chemistry, 2016, 7, 4559-4566.	1.9	29
248	Construction of biodegradable and biocompatible AIE-active fluorescent polymeric nanoparticles by Ce(IV)/HNO 3 redox polymerization in aqueous solution. Materials Science and Engineering C, 2017, 78, 191-197.	3.8	29
249	Ultrasonic-assisted Kabachnik-Fields reaction for rapid fabrication of AIE-active fluorescent organic nanoparticles. Ultrasonics Sonochemistry, 2017, 35, 319-325.	3.8	29
250	Facile preparation of magnetic composites based on carbon nanotubes: Utilization for removal of environmental pollutants. Journal of Colloid and Interface Science, 2019, 545, 8-15.	5.0	29
251	Photothermally induced <i>in situ</i> double emulsion separation by a carbon nanotube/poly(<i>N</i> -isopropylacrylamide) modified membrane with superwetting properties. Journal of Materials Chemistry A, 2020, 8, 7677-7686.	5.2	29
252	One-pot synthesis of optically active polymervia concurrent cooperation of enzymatic resolution and living radical polymerization. Polymer Chemistry, 2013, 4, 264-267.	1.9	28

#	Article	IF	CITATIONS
253	Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations. Polymer Chemistry, 2014, 5, 6656-6661.	1.9	28
254	Synthesis of Amphiphilic Hyperbranched AIEâ€active Fluorescent Organic Nanoparticles and Their Application in Biological Application. Macromolecular Bioscience, 2016, 16, 223-230.	2.1	28
255	Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments. Scientific Reports, 2016, 6, 32540.	1.6	28
256	Harnessing the Day–Night Rhythm of Humidity and Sunlight into Mechanical Work Using Recyclable and Reprogrammable Soft Actuators. ACS Applied Materials & Interfaces, 2019, 11, 29290-29297.	4.0	28
257	Construction of ionic liquid functionalized MXene with extremely high adsorption capacity towards iodine via the combination of mussel-inspired chemistry and Michael addition reaction. Journal of Colloid and Interface Science, 2021, 601, 294-304.	5.0	28
258	pHâ€Responsive Drug Delivery by Amphiphilic Copolymer through Boronate–Catechol Complexation. ChemPlusChem, 2013, 78, 175-184.	1.3	27
259	Facile fabrication of aggregation-induced emission based red fluorescent organic nanoparticles for cell imaging. Chinese Journal of Polymer Science (English Edition), 2014, 32, 871-879.	2.0	27
260	Enhanced removal capability of kaolin toward methylene blue by mussel-inspired functionalization. Journal of Materials Science, 2016, 51, 8116-8130.	1.7	27
261	One-step synthesis, self-assembly and bioimaging applications of adenosine triphosphate containing amphiphilies with aggregation-induced emission feature. Materials Science and Engineering C, 2017, 73, 252-256.	3.8	27
262	Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery. Journal of Colloid and Interface Science, 2017, 508, 396-404.	5.0	27
263	A facile FeBr3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin. Applied Surface Science, 2018, 434, 204-210.	3.1	27
264	Polymers for Fluorescence Imaging of Formaldehyde in Living Systems via the Hantzsch Reaction. ACS Macro Letters, 2018, 7, 1346-1352.	2.3	27
265	A smart nano-V ₂ O ₅ /ODA-coated mesh for a co-responsive photo-induced wettability transition and ROS generation for <i>in situ</i> water purification. Journal of Materials Chemistry A, 2018, 6, 18003-18009.	5.2	27
266	Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing. Polymers, 2020, 12, 621.	2.0	27
267	Surface PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. Journal of Drug Delivery Science and Technology, 2020, 57, 101644.	1.4	27
268	Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by <scp>3D</scp> printing technology. Journal of Applied Polymer Science, 2021, 138, 50114.	1.3	27
269	State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. International Journal of Biological Macromolecules, 2021, 186, 591-615.	3.6	27
270	Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. Materials Science and Engineering C, 2018, 82, 204-209.	3.8	27

#	Article	IF	CITATIONS
271	A novel approach to electrospinning of pristine and aligned MEH-PPV using binary solvents. Journal of Materials Chemistry, 2012, 22, 5523.	6.7	26
272	Preparation of fluorescent organic nanoparticles from polyethylenimine and sucrose for cell imaging. Materials Science and Engineering C, 2016, 68, 37-42.	3.8	26
273	Surface grafting of Eu3+ doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications. Materials Science and Engineering C, 2017, 77, 420-426.	3.8	26
274	The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature. Materials Science and Engineering C, 2017, 80, 543-548.	3.8	26
275	Fabrication, self-assembly and biomedical applications of luminescent sodium hyaluronate with aggregation-induced emission feature. Materials Science and Engineering C, 2017, 81, 120-126.	3.8	26
276	Aggregationâ€induced Emission Based Fluorogens for Mitochondriaâ€ŧargeted Tumor Imaging and Theranostics. Chemistry - an Asian Journal, 2020, 15, 3942-3960.	1.7	26
277	Intrinsically electroactive polyimide microspheres fabricated by electrospraying technology for ascorbic acid detection. Journal of Materials Chemistry, 2011, 21, 15666.	6.7	25
278	Glycosylated aggregation induced emission dye based fluorescent organic nanoparticles: preparation and bioimaging applications. RSC Advances, 2014, 4, 24189.	1.7	25
279	Facile Fabrication of PEGylated Fluorescent Organic Nanoparticles with Aggregationâ€Induced Emission Feature via Formation of Dynamic Bonds and Their Biological Imaging Applications. Macromolecular Rapid Communications, 2016, 37, 1657-1661.	2.0	25
280	Mussel-inspired PEGylated carbon nanotubes: biocompatibility evaluation and drug delivery applications. Toxicology Research, 2016, 5, 1371-1379.	0.9	25
281	Photo-induced surface grafting of phosphorylcholine containing copolymers onto mesoporous silica nanoparticles for controlled drug delivery. Materials Science and Engineering C, 2017, 79, 596-604.	3.8	25
282	One-pot synthesis of AIE based bismuth sulfide nanotheranostics for fluorescence imaging and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 297-304.	2.5	25
283	Fabrication of multifunctional fluorescent organic nanoparticles with AIE feature through photo-initiated RAFT polymerization. Polymer Chemistry, 2017, 8, 7390-7399.	1.9	25
284	Liquid Crystalline Nanocolloids for the Storage of Electro-Optic Responsive Images. ACS Applied Materials & Interfaces, 2019, 11, 8612-8624.	4.0	25
285	Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH ₃ Sensor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 55056-55063.	4.0	25
286	Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy. RSC Advances, 2015, 5, 104451-104457.	1.7	24
287	A Facile Approach for Fabricating Dualâ€Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Waterâ€6oluble Proteins. Advanced Materials Interfaces, 2016, 3, 1600291.	1.9	24
288	Recycling of PE glove waste as highly valuable products for efficient separation of oil-based contaminants from water. Journal of Materials Chemistry A, 2016, 4, 18128-18133.	5.2	24

#	Article	IF	CITATIONS
289	A poly(amidoamine) dendrimer-based nanocarrier conjugated with Angiopep-2 for dual-targeting function in treating glioma cells. Polymer Chemistry, 2016, 7, 715-721.	1.9	24
290	Ultralayered core–shell metal oxide nanosheet arrays for supercapacitors with long-term electrochemical stability. Sustainable Energy and Fuels, 2018, 2, 2115-2123.	2.5	24
291	Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers. Polymers, 2018, 10, 65.	2.0	24
292	Antibacterial Self-Healing Hydrogel via the Ugi Reaction. ACS Applied Polymer Materials, 2020, 2, 404-410.	2.0	24
293	A facile approach to surface modification on versatile substrates for biological applications. Journal of Materials Chemistry, 2012, 22, 17159.	6.7	23
294	Microorganism inspired hydrogels: hierarchical super/macro-porous structure, rapid swelling rate and high adsorption. RSC Advances, 2014, 4, 32475-32481.	1.7	23
295	One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes. Colloids and Surfaces B: Biointerfaces, 2015, 126, 273-279.	2.5	23
296	Preparation of emissive glucose-containing polymer nanoparticles and their cell imaging applications. Polymer Chemistry, 2015, 6, 4455-4461.	1.9	23
297	Recent Advances and Future Prospects of Aggregationâ€induced Emission Carbohydrate Polymers. Macromolecular Rapid Communications, 2017, 38, 1600575.	2.0	23
298	Ultrafast microwave-assisted multicomponent tandem polymerization for rapid fabrication of AIE-active fluorescent polymeric nanoparticles and their potential utilization for biological imaging. Materials Science and Engineering C, 2018, 83, 115-120.	3.8	23
299	Synthesis and biological imaging of cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission characteristics based on the combination of RAFT polymerization and the Biginelli reaction. Journal of Colloid and Interface Science, 2018, 528, 192-199.	5.0	23
300	Reprocessable Thermoset Soft Actuators. Angewandte Chemie, 2019, 131, 17635-17640.	1.6	23
301	Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polymer Chemistry, 2020, 11, 1321-1326.	1.9	23
302	Peanut Leaf-Inspired Hybrid Metal–Organic Framework with Humidity-Responsive Wettability: toward Controllable Separation of Diverse Emulsions. ACS Applied Materials & Interfaces, 2020, 12, 6309-6318.	4.0	23
303	A multi-responsive self-healing hydrogel for controlled release of curcumin. Polymer Chemistry, 2021, 12, 2457-2463.	1.9	23
304	<i>De Novo</i> Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 17250-17260.	6.6	23
305	A novel fluorescent amphiphilic glycopolymer based on a facile combination of isocyanate and glucosamine. Journal of Materials Chemistry C, 2015, 3, 1738-1744.	2.7	22
306	Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Advances, 2015, 5, 89472-89477.	1.7	22

#	Article	IF	CITATIONS
307	Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via self-polymerization of levodopa and their adsorption behavior toward Cu2+. Journal of Materials Science, 2016, 51, 9625-9637.	1.7	22
308	Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. ACS Macro Letters, 2017, 6, 550-555.	2.3	22
309	CO ₂ -Stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polymer Chemistry, 2017, 8, 2833-2840.	1.9	22
310	Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP. Cellulose, 2020, 27, 743-753.	2.4	22
311	DOPA-derived electroactive copolymer and IGF-1 immobilized poly(lactic-co-glycolic) Tj ETQq1 1 0.784314 rgBT /(Journal, 2021, 416, 129129.	Overlock 1 6.6	0 Tf 50 587 22
312	Ultra‧ensitive Ironâ€Đoped Palladium Nanocrystals with Enhanced Hydroxyl Radical Generation for Chemoâ€∤Chemodynamic Nanotherapy. Advanced Functional Materials, 2022, 32, 2107518.	7.8	22
313	Stable biocompatible cross-linked fluorescent polymeric nanoparticles based on AIE dye and itaconic anhydride. Colloids and Surfaces B: Biointerfaces, 2014, 121, 347-353.	2.5	21
314	Fabrication of AIE-active amphiphilic fluorescent polymeric nanoparticles through host–guest interaction. RSC Advances, 2016, 6, 54812-54819.	1.7	21
315	Polymerizable aggregation-induced emission dye for preparation of cross-linkable fluorescent nanoprobes with ultra-low critical micelle concentrations. Materials Science and Engineering C, 2017, 76, 586-592.	3.8	21
316	Simultaneous surface functionalization and drug loading: A novel method for fabrication of cellulose nanocrystals-based pH responsive drug delivery system. International Journal of Biological Macromolecules, 2021, 182, 2066-2075.	3.6	21
317	Magnetic Self-Healing Hydrogel from Difunctional Polymers Prepared via the Kabachnik–Fields Reaction. ACS Macro Letters, 2022, 11, 39-45.	2.3	21
318	Electrospun Sandwichâ€&tructure Composite Membranes for Wound Dressing Scaffolds with High Antioxidant and Antibacterial Activity. Macromolecular Materials and Engineering, 2018, 303, 1700270.	1.7	20
319	Polymerization-induced self-assembly of liquid crystalline ABC triblock copolymers with long solvophilic chains. Polymer Chemistry, 2018, 9, 3944-3951.	1.9	20
320	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angewandte Chemie - International Edition, 2020, 59, 13437-13443.	7.2	20
321	The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromolecular Rapid Communications, 2021, 42, 2000459.	2.0	20
322	Underwater bonding strength of marine mussel-inspired polymers containing DOPA-like units with amino groups. RSC Advances, 2012, 2, 8919.	1.7	19
323	Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization. Polymer Chemistry, 2013, 4, 5720.	1.9	19
324	Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. Materials Science and Engineering C, 2018, 83, 154-159.	3.8	19

#	Article	IF	CITATIONS
325	Polymer-Decorated Filter Material for Wastewater Treatment: In Situ Ultrafast Oil/Water Emulsion Separation and Azo Dye Adsorption. Langmuir, 2018, 34, 13192-13202.	1.6	19
326	Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. ACS Macro Letters, 2019, 8, 639-645.	2.3	19
327	Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Materials Science and Engineering C, 2020, 106, 110157.	3.8	19
328	Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater. ACS Applied Materials & Interfaces, 2020, 12, 33152-33162.	4.0	19
329	Spatiotemporal Magnetocaloric Microenvironment for Guiding the Fate of Biodegradable Polymer Implants. Advanced Functional Materials, 2021, 31, 2009661.	7.8	19
330	Biocompatible fluorescent organic nanoparticles derived from glucose and polyethylenimine. Colloids and Surfaces B: Biointerfaces, 2014, 123, 747-752.	2.5	18
331	Preparation of biocompatible and photostable PEGylated red fluorescent nanoparticles for cellular imaging. Polymer Chemistry, 2015, 6, 5891-5898.	1.9	18
332	Fluorescent protein-reactive polymers via one-pot combination of the Ugi reaction and RAFT polymerization. Polymer Chemistry, 2016, 7, 4867-4872.	1.9	18
333	Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. Polymer Chemistry, 2016, 7, 546-552.	1.9	18
334	"Two in oneâ€: Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. Materials Science and Engineering C, 2020, 108, 110413.	3.8	18
335	Reprogrammable 3D Liquidâ€Crystalline Actuators with Precisely Controllable Stepwise Actuation. Advanced Intelligent Systems, 2021, 3, 2000249.	3.3	18
336	Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications. Macromolecular Rapid Communications, 2017, 38, 1600752.	2.0	17
337	A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging. Materials Science and Engineering C, 2018, 91, 631-637.	3.8	17
338	High-Throughput Preparation of Antibacterial Polymers from Natural Product Derivatives via the Hantzsch Reaction. IScience, 2020, 23, 100754.	1.9	17
339	Anticancer Polymers via the Biginelli Reaction. ACS Macro Letters, 2020, 9, 1249-1254.	2.3	17
340	A smart surface prepared using the switchable superhydrophobicity of neat electrospun intrinsically electroactive polyimide fiber mats. Soft Matter, 2011, 7, 10313.	1.2	16
341	Synthesis and self-assembly of CO ₂ -responsive dendronized triblock copolymers. Polymer Chemistry, 2015, 6, 7427-7435.	1.9	16
342	Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. Journal of Colloid and Interface Science, 2017, 508, 248-253.	5.0	16

#	Article	IF	CITATIONS
343	One-step synthesis of europium complexes containing polyamino acids through ring-opening polymerization and their potential for biological imaging applications. Talanta, 2018, 188, 1-6.	2.9	16
344	Preparation of water dispersible and biocompatible nanodiamond-poly(amino acid) composites through the ring-opening polymerization. Materials Science and Engineering C, 2018, 91, 496-501.	3.8	16
345	DNA as Functional Material in Organic-Based Electronics. Applied Sciences (Switzerland), 2018, 8, 90.	1.3	16
346	Intracellular calcium ions and morphological changes of cardiac myoblasts response to an intelligent biodegradable conducting copolymer. Materials Science and Engineering C, 2018, 90, 168-179.	3.8	16
347	3D bioprinting of an electroactive and selfâ€healing polysaccharide hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 76-85.	1.3	16
348	Biocompatible fluorescent polymeric nanoparticles based on AIE dye and phospholipid monomers. RSC Advances, 2014, 4, 21588.	1.7	15
349	Supermolecular self assembly of AIE-active nanoprobes: fabrication and bioimaging applications. RSC Advances, 2015, 5, 107355-107359.	1.7	15
350	Fabrication of silica nanoparticle based polymer nanocomposites <i>via</i> a combination of mussel inspired chemistry and SET-LRP. RSC Advances, 2015, 5, 91308-91314.	1.7	15
351	Rapid preparation of branched and degradable AIE-active fluorescent organic nanoparticles via formation of dynamic phenyl borate bond. Colloids and Surfaces B: Biointerfaces, 2017, 150, 114-120.	2.5	15
352	AlE-active self-assemblies from a catalyst-free thiol-yne click reaction and their utilization for biological imaging. Materials Science and Engineering C, 2018, 92, 61-68.	3.8	15
353	Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization. Carbohydrate Polymers, 2019, 223, 115102.	5.1	15
354	Recent Advances and Progress for the Fabrication and Surface Modification of AlE-active Organic-inorganic Luminescent Composites. Chinese Journal of Polymer Science (English Edition), 2019, 37, 340-351.	2.0	15
355	A magnetic solder for assembling bulk covalent adaptable network blocks. Chemical Science, 2020, 11, 7694-7700.	3.7	15
356	Gold–iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. Biomaterials Science, 2021, 9, 3979-3988.	2.6	15
357	Rational Design of Carbon Layer-Decorated Metal Oxide/Nickel Cobalt Sulfide-Based Composite with Faster Energy Storage and Long Cyclic Life. ACS Applied Energy Materials, 2021, 4, 2138-2147.	2.5	15
358	Direct transformation of <i>n</i> -alkane into all- <i>trans</i> conjugated polyene via cascade dehydrogenation. National Science Review, 2021, 8, nwab093.	4.6	15
359	A universal gene carrier platform for treatment of human prostatic carcinoma by p53 transfection. Biomaterials, 2014, 35, 3110-3120.	5.7	14
360	Nanodiamond based supermolecular nanocomposites: preparation and biocompatibility evaluation. RSC Advances, 2015, 5, 96983-96989.	1.7	14

#	Article	IF	CITATIONS
361	Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. RSC Advances, 2015, 5, 65884-65889.	1.7	14
362	A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. Chemical Communications, 2015, 51, 16786-16789.	2.2	14
363	Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 2.5	Tf 50 662 To 14
364	Post-polymerization modification via the Biginelli reaction to prepare water-soluble polymer adhesives. Polymer Chemistry, 2017, 8, 5490-5495.	1.9	14
365	Fabrication of water dispersible and biocompatible AlE-active fluorescent polymeric nanoparticles through a "one-pot―Mannich reaction. Polymer Chemistry, 2017, 8, 4746-4751.	1.9	14
366	Facile preparation of thermoresponsive fluorescent silica nanopaprticles based composites through the oxygen tolerance light-induced RAFT polymerization. Journal of Molecular Liquids, 2018, 259, 179-185.	2.3	14
367	A polymerizable aggregation-induced emission dye for fluorescent nanoparticles: synthesis, molecular structure and application in cell imaging. Polymer Chemistry, 2019, 10, 2162-2169.	1.9	14
368	Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. Materials Science and Engineering C, 2019, 94, 310-317.	3.8	14
369	Liquid rystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie, 2020, 132, 4808-4814.	1.6	14
370	The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. Materials Science and Engineering C, 2020, 109, 110442.	3.8	14
371	Red aggregation-induced emission luminogen and Gd3+ codoped mesoporous silica nanoparticles as dual-mode probes for fluorescent and magnetic resonance imaging. Journal of Colloid and Interface Science, 2020, 567, 136-144.	5.0	14
372	Preparation recombination humanâ€like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts. Journal of Biomedical Materials Research - Part A, 2021, 109, 346-353.	2.1	14
373	Interfacial engineering in amorphous/crystalline heterogeneous nanostructures as a highly effective battery-type electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2022, 10, 11186-11195.	5.2	14
374	One-pot polymer modification of carbon nanotubes through mercaptoacetic acid locking imine reaction and π–π stacking. RSC Advances, 2015, 5, 54133-54137.	1.7	13
375	Lighting up the PEGylation agents via the Hantzsch reaction. Polymer Chemistry, 2016, 7, 523-528.	1.9	13
376	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie, 2018, 130, 5842-5847.	1.6	13
377	Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment. Materials Science and Engineering C, 2018, 91, 556-563.	3.8	13
378	Click multiwalled carbon nanotubes: A novel method for preparation of carboxyl groups functionalized carbon quantum dots. Materials Science and Engineering C, 2020, 108, 110376.	3.8	13

#	Article	IF	CITATIONS
379	Direct surface modification of nanodiamonds with ionic copolymers for fast adsorptive removal of copper ions with high efficiency. Colloids and Interface Science Communications, 2020, 37, 100278.	2.0	13
380	An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Advances, 2020, 10, 5704-5711.	1.7	13
381	Green Production of Biodegradable Mulch Films for Effective Weed Control. ACS Omega, 2021, 6, 32327-32333.	1.6	13
382	One-step preparation of branched PEG functionalized AIE-active luminescent polymeric nanoprobes. Science China Chemistry, 2016, 59, 1003-1009.	4.2	12
383	A Novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging. Journal of Colloid and Interface Science, 2018, 516, 392-397.	5.0	12
384	Facile construction of luminescent supramolecular assemblies with aggregation-induced emission feature through supramolecular polymerization and their biological imaging. Materials Science and Engineering C, 2018, 85, 233-238.	3.8	12
385	Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. Materials Science and Engineering C, 2020, 106, 110297.	3.8	12
386	In vitro and in vivo Study on an Injectable Glycol Chitosan/Dibenzaldehyde-Terminated Polyethylene Glycol Hydrogel in Repairing Articular Cartilage Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 607709.	2.0	12
387	Spatiotemporally dynamic therapy with shape-adaptive drug-gel for the improvement of tissue regeneration with ordered structure. Bioactive Materials, 2022, 8, 165-176.	8.6	12
388	Novel superwetting nanofibrous skins for removing stubborn soluble oil in emulsified wastewater. Journal of Materials Chemistry A, 2021, 9, 26127-26134.	5.2	12
389	Zero-Dimensional Molecular Ferroelectrics with Significant Nonlinear Effect and Giant Entropy. Chemistry of Materials, 2022, 34, 6323-6330.	3.2	12
390	Tetraphenylethene end-capped polyethylenimine fluorescent nanoparticles for cell imaging. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1479-1488.	2.0	11
391	Thermo- and salt-responsive poly(NIPAm-co-AAc-Brij-58) microgels: adjustable size, stability under salt stimulus, and rapid protein adsorption/desorption. Colloid and Polymer Science, 2016, 294, 617-628.	1.0	11
392	Buildup of Redoxâ€Responsive Hybrid from Polyoxometalate and Redoxâ€Active Conducting Oligomer: Its Selfâ€Assemblies with Controllable Morphologies. Chemistry - A European Journal, 2017, 23, 14860-14865.	1.7	11
393	Surface PEGylation and biological imaging of fluorescent Tb3+-doped layered double hydroxides through the photoinduced RAFT polymerization. Journal of Colloid and Interface Science, 2018, 532, 641-649.	5.0	11
394	Amphiphilic fluorescent copolymers via one-pot synthesis of RAFT polymerization and multicomponent Biginelli reaction and their cells imaging applications. Journal of Materials Research, 2019, 34, 3011-3019.	1.2	11
395	A Facile Preparation of Musselâ€Inspired Poly(dopamine phosphonateâ€ <i>co</i> â€PEGMA)s via a Oneâ€Pot Multicomponent Polymerization System. Macromolecular Rapid Communications, 2020, 41, e1900533.	2.0	11
396	Integration of catalytic capability and pH-responsive wettability in a V _x O _y -based dual-mesh system: towards solving the trade-off between the separation flow rate and degradation efficiency. Journal of Materials Chemistry A, 2021, 9, 5454-5467.	5.2	11

#	Article	IF	CITATIONS
397	Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy. Nano Research, 2022, 15, 2244-2253.	5.8	11
398	Biocompatible zwitterionic phosphorylcholine polymers with aggregation-induced emission feature. Colloids and Surfaces B: Biointerfaces, 2017, 157, 166-173.	2.5	11
399	Preparation of silica nanoparticle based polymer composites via mussel inspired chemistry and their enhanced adsorption capability towards methylene blue. RSC Advances, 2016, 6, 85213-85221.	1.7	10
400	Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization. Materials Science and Engineering C, 2017, 80, 404-410.	3.8	10
401	Fabrication and characterization of hyperbranched polyglycerol modified carbon nanotubes through the host-guest interactions. Materials Science and Engineering C, 2018, 91, 458-465.	3.8	10
402	Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. Journal of Colloid and Interface Science, 2018, 509, 327-333.	5.0	10
403	Polyanionic self-healing hydrogels for the controlled release of cisplatin. European Polymer Journal, 2020, 133, 109773.	2.6	10
404	Direct grafting of cellulose nanocrystals with poly(ionic liquids) via Gamma-ray irradiation and their utilization for adsorptive removal of CR. International Journal of Biological Macromolecules, 2022, 194, 1029-1037.	3.6	10
405	Fabrication of dual-functional electrodes using oxygen vacancy abundant NiCo ₂ O ₄ nanosheets for advanced hybrid supercapacitors and Zn-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 4452-4463.	3.0	10
406	Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polymer Bulletin, 2017, 74, 4525-4536.	1.7	9
407	A novel strategy for fabrication of fluorescent hydroxyapatite based polymer composites through the combination of surface ligand exchange and self-catalyzed ATRP. Materials Science and Engineering C, 2018, 92, 518-525.	3.8	9
408	Fabrication of β cyclodextrin containing AIE-active polymeric composites through formation of dynamic phenylboronic borate and their theranostic applications. Cellulose, 2019, 26, 8829-8841.	2.4	9
409	PG–PEI–Ag NPs-Decorated Membrane for Pretreatment of Laboratory Wastewater: Simultaneous Removal of Water-Insoluble Organic Solvents and Water-Soluble Anionic Organic Pollutants. Langmuir, 2019, 35, 7680-7690.	1.6	9
410	Antioxidant Polymers via the Kabachnikâ€Fields Reaction to Control Cellular Oxidative Stress. Macromolecular Bioscience, 2020, 20, e1900419.	2.1	9
411	Fabrication of claviform fluorescent polymeric nanomaterials containing disulfide bond through an efficient and facile four-component Ugi reaction. Materials Science and Engineering C, 2021, 118, 111437.	3.8	9
412	Poly(amino acid)s-based star AlEgens for cell uptake with pH-response and chiral difference. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111687.	2.5	9
413	Ultrastable Near-Infrared Aggregation-Induced Emission Nanoparticles as a Fluorescent Probe: Long-Term Tumor Monitoring and Lipid Droplet Tracking. CCS Chemistry, 2021, 3, 1569-1606.	4.6	9
414	A near-infrared bioprobe with aggregation-induced emission feature for in vitro photodynamic therapy. Dyes and Pigments, 2021, 194, 109521.	2.0	9

#	Article	IF	CITATIONS
415	A Mitochondriaâ€ŧargeted AlEgen Labelled with ¹⁸ F for Breast Cancer Cell Imaging and Therapy. Chemistry - an Asian Journal, 2021, 16, 3963-3969.	1.7	9
416	Antioxidant Polymers via the Ugi Reaction for In Vivo Protection of UV-Induced Oxidative Stress. Chemistry of Materials, 2022, 34, 2645-2654.	3.2	9
417	Liquid Crystalline Network Composites Reinforced by Silica Nanoparticles. Materials, 2014, 7, 5356-5365.	1.3	8
418	Optically Active Polymer Via Oneâ€Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. Macromolecular Chemistry and Physics, 2015, 216, 1483-1489.	1.1	8
419	Structural Evolution and Formation Mechanism of the Soft Colloidal Arrays in the Core of PAAm Nanofibers by Electrospun Packing. Langmuir, 2017, 33, 10291-10301.	1.6	8
420	One-pot ultrafast preparation of silica quantum dots and their utilization for fabrication of luminescent mesoporous silica nanoparticles. Materials Science and Engineering C, 2018, 93, 679-685.	3.8	8
421	Surface modification of fluorescent Tb3+-doped layered double hydroxides with hyperbranched polymers through host-guest interaction. Materials Science and Engineering C, 2019, 104, 109976.	3.8	8
422	A novel AIE-active dye for fluorescent nanoparticles by one-pot combination of Hantzsch reaction and RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Advances, 2019, 9, 32601-32607.	1.7	8
423	Microorganism inspired hydrogels: fermentation capacity, gelation process and pore-forming mechanism under temperature stimulus. RSC Advances, 2015, 5, 91937-91945.	1.7	7
424	Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction. Colloids and Surfaces B: Biointerfaces, 2016, 145, 795-801.	2.5	7
425	Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release. Materials Science and Engineering C, 2017, 81, 57-65.	3.8	7
426	Small fluorescent albumin nanoparticles for targeted photothermal therapy via albumin-Binding protein pathways. Colloids and Surfaces B: Biointerfaces, 2019, 181, 696-704.	2.5	7
427	Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced emission characteristic via the thiol-ene click reaction and their potential for biological imaging. Materials Science and Engineering C, 2019, 98, 293-299.	3.8	7
428	Preparation and biological imaging of fluorescent hydroxyapatite nanoparticles with poly(2-ethyl-2-oxazoline) through surface-initiated cationic ring-opening polymerization. Materials Science and Engineering C, 2020, 108, 110424.	3.8	7
429	Porously nanostructured MnO/C composites directed from polydopamine as high-performance supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 5781-5789.	1.1	7
430	Fluorescent polymers <i>via</i> post-polymerization modification of Biginelli-type polymers for cellular protection against UV damage. Polymer Chemistry, 2021, 12, 852-857.	1.9	7
431	In Situ Visualization of Reversible Diels–Alder Reactions with Self-Reporting Aggregation-Induced Emission Luminogens. ACS Applied Materials & Interfaces, 2022, 14, 3485-3495.	4.0	7
432	Synthesis of a Re-usable Cellobiase Enzyme Catalyst through In situ Encapsulation in Nonsurfactant Templated Sol–Gel Mesoporous Silica. Topics in Catalysis, 2012, 55, 1247-1253.	1.3	6

#	Article	IF	CITATIONS
433	Fabrication of photostable PEGylated polymer nanoparticles from AIE monomer and trimethylolpropane triacrylate. RSC Advances, 2015, 5, 75823-75830.	1.7	6
434	Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance. Frontiers of Materials Science, 2020, 14, 450-458.	1.1	6
435	Polymerization of Solid-State 2,2â€2-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. ACS Applied Polymer Materials, 2020, 2, 1518-1527.	2.0	6
436	Hetero-nanostructures constructed by 2D porous metal oxide/hydroxide nanosheets supported on 1D hollow Co ₉ S ₈ nanowires for hybrid supercapacitors with high areal capacity. Inorganic Chemistry Frontiers, 2021, 8, 4676-4684.	3.0	6
437	Intrinsic hydroquinone-functionalized aggregation-induced emission core shows redox and pH sensitivity. Communications Chemistry, 2021, 4, .	2.0	6
438	Antifungal Polymer Containing Menthoxy Triazine. ACS Applied Polymer Materials, 2021, 3, 3702-3707.	2.0	6
439	Combating Biofilms by a Self-Adapting Drug Loading Hydrogel. ACS Applied Bio Materials, 2021, 4, 6219-6226.	2.3	6
440	<i>In situ</i> observation of heterogeneous catalytic organic reactions <i>via</i> aggregation-induced emission luminogens. Chemical Communications, 2022, 58, 1601-1604.	2.2	6
441	Bent-Core-Liquid-Crystalline-Based Smart Material with Switchable Photoluminescence in Two Distinct Modulating Modes. Journal of Physical Chemistry C, 2011, 115, 22540-22546.	1.5	5
442	Mesoporous SiO ₂ -Supported Pt Nanoparticles for Catalytic Application. ISRN Nanomaterials, 2013, 2013, 1-7.	0.7	5
443	Temperatureâ€Induced Transformation from Large Compound Vesicles to Wormâ€Iike Aggregates by ABC Triblock Copolymer. Chinese Journal of Chemistry, 2015, 33, 1338-1346.	2.6	5
444	Facile preparation, through Schiff base formation, of luminescent amphiphilic carbohydrate polymers with aggregation-induced emission characteristics for biological imaging. RSC Advances, 2016, 6, 76011-76016.	1.7	5
445	RNA–CTMA Dielectrics in Organic Field Effect Transistor Memory. Applied Sciences (Switzerland), 2018, 8, 887.	1.3	5
446	Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. Journal of Nanoscience and Nanotechnology, 2018, 18, 2345-2351.	0.9	5
447	Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging. Materials Science and Engineering C, 2020, 111, 110804.	3.8	5
448	Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromolecular Rapid Communications, 2021, 42, e2000563.	2.0	5
449	Revealing the Distribution of Aggregation-Induced Emission Nanoparticles via Dual-Modality Imaging with Fluorescence and Mass Spectrometry. Research, 2021, 2021, 9784053.	2.8	5
450	Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1431-1440.	2.0	5

#	Article	IF	CITATIONS
451	Water soluble photocurable carboxymethyl celluloseâ€based bioactive hydrogels for digital light processing. Journal of Applied Polymer Science, 2022, 139, .	1.3	5
452	New synthetic strategy for facile synthesis of functional polymers by one-pot combination of controlled radical polymerization and enzymatic reaction. Polymer International, 2015, 64, 705-712.	1.6	4
453	One-step reduction and simultaneous decoration on various porous substrates: toward oil filtration from water. RSC Advances, 2016, 6, 86019-86024.	1.7	4
454	Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture. Journal of Visualized Experiments, 2017, , .	0.2	4
455	New Method to Determine the Effect of Surface PEGylation on Cellular Uptake Efficiency of Mesoporous Silica Nanoparticles with AlEgens. Macromolecular Chemistry and Physics, 2018, 219, 1800034.	1.1	4
456	Improved bacterial nanocellulose production from glucose without the loss of quality by evaluating thirteen agitator configurations at low speed. Microbial Biotechnology, 2019, 12, 1387-1402.	2.0	4
457	LBL assembly of Ag@Ti ₃ C ₂ T _X and chitosan on PLLA substrate to enhance antibacterial and biocompatibility. Biomedical Materials (Bristol), 2022, 17, 035006.	1.7	4
458	Ultrafast Fabrication of Iron/Manganese Co-Doped Bismuth Trimetallic Nanoparticles: A Thermally Aided Chemodynamic/Radio-Nanoplatform for Low-Dose Radioresistance. ACS Applied Materials & Interfaces, 2022, 14, 21931-21944.	4.0	4
459	Simple Method to Fabricate an Biocompatible Antibacterial Surface on a Versatile Substrate through an Antiadhesion Approach. Chemistry Letters, 2012, 41, 1655-1657.	0.7	3
460	Multifunctional Fluorescent Magnetic Nanoparticles: Synthesis, Characterization and Targeted Cell Imaging Applications. Chinese Journal of Chemistry, 2017, 35, 977-983.	2.6	3
461	Catechol Moiety Integrated Triâ€Aryl Type AlEgen for Visual and Quantitative Boronic Acid Detection. Chemistry - A European Journal, 2022, 28, e202103351.	1.7	3
462	Recent development and advances in the fabrication and biomedical applications of nanoparticle-based drug delivery systems for metformin. Materials Chemistry Frontiers, 2022, 6, 128-144.	3.2	3
463	AlEgens with cyano-modification in different sites: Potential â€~Meta-site effect' in mechanochromism behavior. Dyes and Pigments, 2022, 198, 109939.	2.0	3
464	Accelerated Curing Speed of Ethyl <i>α</i> yanoacrylate by Polymer with Catecholamine Groups. Chinese Journal of Chemistry, 2012, 30, 2275-2280.	2.6	2
465	Preparation of electrospun electroactive POMA fiber mats. Polymer International, 2012, 61, 213-221.	1.6	2
466	A Dually Charged Membrane for Seawater Utilization: Combining Marine Pollution Remediation and Desalination by Simultaneous Removal of Polluted Dispersed Oil, Surfactants, and Ions. ACS Applied Materials &: Interfaces, 2021, 13, 48171-48178.	4.0	2
467	High Temperature Hysteresis in Bio-Organic Field-Effect Transistor based on DNA-CTMA as Gate Dielectric. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 513-517.	0.1	1
468	RAI3 knockdown enhances osteogenic differentiation of bone marrow mesenchymal stem cells via STAT3 signaling pathway. Biochemical and Biophysical Research Communications, 2020, 524, 516-522.	1.0	1

#	Article	IF	CITATIONS
469	A Family of Planar Luminogens with Active Photoluminescence in both Dispersion and Aggregation States. ChemPhotoChem, 0, , .	1.5	1
470	The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States. Polymers, 2022, 14, 2880.	2.0	1
471	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angewandte Chemie, 2020, 132, 13539-13545.	1.6	0
472	A Liquid Gripper Based on Phase Transitional Metallic Ferrofluid (Adv. Funct. Mater. 32/2021). Advanced Functional Materials, 2021, 31, 2170232.	7.8	0
473	Novel Binary Ni-Based Mixed Metal–Organic Framework Nanosheets Materials and Their High Optical Power Limiting. ACS Omega, 2022, 7, 10429-10437.	1.6	0