Marie-Claire Arrieta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inferring early-life host and microbiome functions by mass spectrometry-based metaproteomics and metabolomics. Computational and Structural Biotechnology Journal, 2022, 20, 274-286.	1.9	5
2	Metaproteomic profiling of fungal gut colonization in gnotobiotic mice. Animal Microbiome, 2022, 4, 14.	1.5	5
3	Gut-on-chip for ecological and causal human gut microbiome research. Trends in Microbiology, 2022, 30, 710-721.	3.5	17
4	Multi-strain probiotics for extremely preterm infants: a randomized controlled trial. Pediatric Research, 2022, 92, 1663-1670.	1.1	7
5	"Molding―immunity—modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunology, 2022, 15, 573-583.	2.7	12
6	Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host and Microbe, 2022, 30, 696-711.e5.	5.1	63
7	Concurrent Prebiotic Intake Reverses Insulin Resistance Induced by Early-Life Pulsed Antibiotic in Rats. Biomedicines, 2021, 9, 66.	1.4	5
8	Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Frontiers in Microbiology, 2021, 12, 634539.	1.5	15
9	The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	82
10	The intestinal mycobiome as a determinant of host immune and metabolic health. Current Opinion in Microbiology, 2021, 62, 8-13.	2.3	20
11	Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes, 2021, 13, 1-15.	4.3	35
12	Cervical Squamous Intraepithelial Lesions Are Associated with Differences in the Vaginal Microbiota of Mexican Women. Microbiology Spectrum, 2021, 9, e0014321.	1.2	21
13	The Fungal Microbiome and Asthma. Frontiers in Cellular and Infection Microbiology, 2020, 10, 583418.	1.8	35
14	Prebiotic Oligofructose Prevents Antibioticâ€Induced Obesity Risk and Improves Metabolic and Gut Microbiota Profiles in Rat Dams and Offspring. Molecular Nutrition and Food Research, 2020, 64, 2000288.	1.5	15
15	Host–microbiome intestinal interactions during early life: considerations for atopy and asthma development. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 138-148.	1.1	10
16	Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nature Communications, 2020, 11, 2577.	5.8	151
17	Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies. MSystems, 2018, 3, .	1.7	98
18	Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a	1.5	181

8	nonindustrialized setting. Iou	rnal of Allergy and C	linical Immunology, 2018, 1	42, 424-434.e10.
	inerin aue anale a corrigi jour			

MARIE-CLAIRE ARRIETA

#	Article	IF	CITATIONS
19	The association between early life antibiotic use and allergic disease in young children: recent insights and their implications. Expert Review of Clinical Immunology, 2018, 14, 841-855.	1.3	25
20	Asymptomatic Intestinal Colonization with Protist <i>Blastocystis</i> Is Strongly Associated with Distinct Microbiome Ecological Patterns. MSystems, 2018, 3, .	1.7	99
21	Recent Study Shows That Bacteria And Fungi In The Gut Of Babies Are Linked To Future Asthma Risk. , 2018, , .		0
22	A critical assessment of the "sterile womb―and "in utero colonization―hypotheses: implications for research on the pioneer infant microbiome. Microbiome, 2017, 5, 48.	4.9	744
23	Probiotics supplementation and length of hospital stay in neonates with gastrointestinal surgery. International Journal of Surgery Protocols, 2017, 6, 13-16.	0.5	2
24	Hygiene Hypothesis in Asthma Development: Is Hygiene to Blame?. Archives of Medical Research, 2017, 48, 717-726.	1.5	33
25	Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective. Frontiers in Immunology, 2017, 8, 788.	2.2	144
26	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	5.1	190
27	Shifts in <i>Lachnospira</i> and <i>Clostridium sp.</i> in the 3-month stool microbiome are associated with preschool age asthma. Clinical Science, 2016, 130, 2199-2207.	1.8	100
28	Increasing Small Intestinal Permeability Worsens Colitis in the IL-10â^'/â^' Mouse and Prevents the Induction of Oral Tolerance to Ovalbumin. Inflammatory Bowel Diseases, 2015, 21, 8-18.	0.9	5
29	Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine, 2015, 7, 307ra152.	5.8	1,277
30	Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nature Communications, 2015, 6, 7806.	5.8	172
31	The Intestinal Microbiome in Early Life: Health and Disease. Frontiers in Immunology, 2014, 5, 427.	2.2	685
32	The intestinal microbiota and allergic asthma. Journal of Infection, 2014, 69, S53-S55.	1.7	30
33	A fresh look at the hygiene hypothesis: How intestinal microbial exposure drives immune effector responses in atopic disease. Seminars in Immunology, 2013, 25, 378-387.	2.7	55