Deborah Dean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545305/publications.pdf

Version: 2024-02-01

43 papers 1,567 citations

331670 21 h-index 315739 38 g-index

47 all docs 47
docs citations

47 times ranked

1538 citing authors

#	Article	IF	CITATIONS
1	Persistent Chlamydia trachomatisInfections Resist Apoptotic Stimuli. Infection and Immunity, 2001, 69, 2442-2447.	2.2	131
2	Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots. Genome Research, 2006, 17, 50-60.	5 . 5	111
3	Hypervirulent Chlamydia trachomatis Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L ₂) and D Lineages. MBio, 2011, 2, e00045-11.	4.1	100
4	Population Genomics of Chlamydia trachomatis: Insights on Drift, Selection, Recombination, and Population Structure. Molecular Biology and Evolution, 2012, 29, 3933-3946.	8.9	94
5	Recombination in the ompA Gene but Not the omcB Gene of Chlamydia Contributes to Serovar-Specific Differences in Tissue Tropism, Immune Surveillance, and Persistence of the Organism. Journal of Bacteriology, 2001, 183, 5997-6008.	2.2	88
6	Predicting Phenotype and Emerging Strains among <i>Chlamydia trachomatis </i> Infections. Emerging Infectious Diseases, 2009, 15, 1385-1394.	4.3	87
7	Population-Based Genetic and Evolutionary Analysis of Chlamydia trachomatis Urogenital Strain Variation in the United States. Journal of Bacteriology, 2004, 186, 2457-2465.	2.2	82
8	Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biology Direct, 2011, 6, 28.	4.6	70
9	Population structure of <i>Neisseria gonorrhoeae </i> based on whole genome data and its relationship with antibiotic resistance. PeerJ, 2015, 3, e806.	2.0	67
10	Multiple Chlamydiaceae Species in Trachoma: Implications for Disease Pathogenesis and Control. PLoS Medicine, 2008, 5, e14.	8.4	61
11	Fluorometric Paper-Based, Loop-Mediated Isothermal Amplification Devices for Quantitative Point-of-Care Detection of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). ACS Sensors, 2021, 6, 742-751.	7.8	53
12	Chlamydia pneumoniae and Acute Chest Syndrome in Patients With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2003, 25, 46-55.	0.6	52
13	Comparison of Performance and Cost-Effectiveness of Direct Fluorescent-Antibody, Ligase Chain Reaction, and PCR Assays for Verification of Chlamydial Enzyme Immunoassay Results for Populations with a Low to Moderate Prevalence of <i>Chlamydia trachomatis</i> Infection. Journal of Clinical Microbiology, 1998, 36, 94-99.	3.9	45
14	The utility of serology for elimination surveillance of trachoma. Nature Communications, 2018, 9, 5444.	12.8	41
15	Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen. Genome Biology and Evolution, 2016, 8, 2613-2623.	2.5	35
16	Lateral flow-based antibody testing for Chlamydia trachomatis. Journal of Immunological Methods, 2016, 435, 27-31.	1.4	34
17	<i>Chlamydiaceae</i> Genomics Reveals Interspecies Admixture and the Recent Evolution of <i>Chlamydia abortus</i> Infecting Lower Mammalian Species and Humans. Genome Biology and Evolution, 2015, 7, 3070-3084.	2.5	30
18	Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Frontiers in Microbiology, 2017, 8, 156.	3.5	29

#	Article	IF	Citations
19	Rapid colorimetric loop-mediated isothermal amplification for hypersensitive point-of-care Staphylococcus aureus enterotoxin A gene detection in milk and pork products. Scientific Reports, 2020, 10, 7768.	3.3	28
20	Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs). Scientific Reports, 2016, 6, 23148.	3.3	27
21	Comprehensive bioinformatics analysis of Mycoplasma pneumoniae genomes to investigate underlying population structure and type-specific determinants. PLoS ONE, 2017, 12, e0174701.	2.5	27
22	Chlamydia psittaci comparative genomics reveals intraspecies variations in the putative outer membrane and type III secretion system genes. Microbiology (United Kingdom), 2015, 161, 1378-1391.	1.8	24
23	Direct Amplification, Sequencing and Profiling of Chlamydia trachomatis Strains in Single and Mixed Infection Clinical Samples. PLoS ONE, 2014, 9, e99290.	2.5	24
24	Chlamydia trachomatis Strain Types Have Diversified Regionally and Globally with Evidence for Recombination across Geographic Divides. Frontiers in Microbiology, 2017, 8, 2195.	3.5	23
25	<i>Chlamydia trachomatis</i> regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. Cellular Microbiology, 2018, 20, e12801.	2.1	23
26	Evaluating the Antibiotic Susceptibility of Chlamydia – New Approaches for in Vitro Assays. Frontiers in Microbiology, 2018, 9, 1414.	3.5	22
27	Clinical Persistence of Chlamydia trachomatis Sexually Transmitted Strains Involves Novel Mutations in the Functional $\hat{l}\pm\hat{l}^2\hat{l}^2\hat{l}\pm$ Tetramer of the Tryptophan Synthase Operon. MBio, 2019, 10, .	4.1	20
28	Rapid and sensitive detection of Chlamydia trachomatis sexually transmitted infections in resource-constrained settings in Thailand at the point-of-care. PLoS Neglected Tropical Diseases, 2018, 12, e0006900.	3.0	19
29	TRAIL-R1 Is a Negative Regulator of Pro-Inflammatory Responses and Modulates Long-Term Sequelae Resulting from Chlamydia trachomatis Infections in Humans. PLoS ONE, 2014, 9, e93939.	2.5	15
30	A Multiplexed Microfluidic PCR Assay for Sensitive and Specific Point-of-Care Detection of Chlamydia trachomatis. PLoS ONE, 2012, 7, e51685.	2.5	14
31	NovelChlamydia trachomatisStrains in Heterosexual Sex Partners, Indianapolis, Indiana, USA. Emerging Infectious Diseases, 2014, 20, 1841-1847.	4.3	14
32	Hyperendemic Chlamydia trachomatis sexually transmitted infections among females represent a high burden of asymptomatic disease and health disparity among Pacific Islanders in Fiji. PLoS Neglected Tropical Diseases, 2020, 14, e0008022.	3.0	13
33	Stromal Fibroblasts Drive Host Inflammatory Responses That Are Dependent on Chlamydia trachomatis Strain Type and Likely Influence Disease Outcomes. MBio, 2019, 10, .	4.1	12
34	Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical Vaginal and Rectal Swabs. MSphere, 2021, 6, .	2.9	9
35	Development and Evaluation of a Point-of-Care Test in a Low-Resource Setting with High Rates of Chlamydia trachomatis Urogenital Infections in Fiji. Journal of Clinical Microbiology, 2021, 59, e0018221.	3.9	9
36	Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay. PLoS ONE, 2017, 12, e0178653.	2.5	8

DEBORAH DEAN

#	Article	IF	CITATIONS
37	Metagenomic Shotgun Sequencing of Endocervical, Vaginal, and Rectal Samples among Fijian Women with and without Chlamydia trachomatis Reveals Disparate Microbial Populations and Function across Anatomic Sites: a Pilot Study. Microbiology Spectrum, 2022, 10, e0010522.	3.0	8
38	A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. Cell Reports, 2016, 14, 611-620.	6.4	6
39	Tryptophan Operon Diversity Reveals Evolutionary Trends among Geographically Disparate Chlamydia trachomatis Ocular and Urogenital Strains Affecting Tryptophan Repressor and Synthase Function. MBio, 2021, 12, .	4.1	5
40	Chlamydia trachomatisPathogenicity and Disease. Issues in Infectious Diseases, 2013, , 25-60.	0.1	4
41	A turnâ€off fluorescent substrate for horseradish peroxidase improves the sensitivity of <scp>ELISA</scp> s. Journal of Polymer Science Part A, 2015, 53, 206-210.	2.3	2
42	Reply to Rockey et al., "Genomics and Chlamydial Persistence <i>In Vivo</i> ― MBio, 2019, 10, .	4.1	0
43	Molecular Evolution of Chlamydiales. , 0, , 475-488.		0