
Javier Fernandez-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia, 2014, 55, 791-802.	5.1	766
2	Pharmacological and biochemical interactions between opioids and cannabinoids. Trends in Pharmacological Sciences, 1999, 20, 287-294.	8.7	364
3	Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson's disease. Neurobiology of Disease, 2005, 19, 96-107.	4.4	339
4	Cannabinoid CB2 receptor: a new target for controlling neural cell survival?. Trends in Pharmacological Sciences, 2007, 28, 39-45.	8.7	331
5	Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain, 2009, 132, 3152-3164.	7.6	323
6	Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration. PLoS ONE, 2009, 4, e5777.	2.5	305
7	The endogenous cannabinoid system and brain development. Trends in Neurosciences, 2000, 23, 14-20.	8.6	303
8	Pharmacological Targeting of the Transcription Factor Nrf2 at the Basal Ganglia Provides Disease Modifying Therapy for Experimental Parkinsonism. Antioxidants and Redox Signaling, 2011, 14, 2347-2360.	5.4	271
9	Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: Importance of antioxidant and cannabinoid receptor-independent properties. Brain Research, 2007, 1134, 162-170.	2.2	258
10	Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?. British Journal of Clinical Pharmacology, 2013, 75, 323-333.	2.4	254
11	Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Research, 2002, 954, 73-81.	2.2	253
12	The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic–ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiology of Disease, 2010, 37, 434-440.	4.4	222
13	Cannabinoid tolerance and dependence: A review of studies in laboratory animals. Pharmacology Biochemistry and Behavior, 2005, 81, 300-318.	2.9	211
14	Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain, 2011, 134, 119-136.	7.6	178
15	Sex Steroid Influence on Cannabinoid CB1 Receptor mRNA and Endocannabinoid Levels in the Anterior Pituitary Gland. Biochemical and Biophysical Research Communications, 2000, 270, 260-266.	2.1	172
16	The endocannabinoid system as a target for the treatment of motor dysfunction. British Journal of Pharmacology, 2009, 156, 1029-1040.	5.4	168
17	Increased cannabinoid CB1receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson's syndrome and of MPTP-treated marmosets. European Journal of Neuroscience, 2001, 14, 1827-1832.	2.6	166
18	Cannabinoid CB ₂ receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington's disease. Glia, 2009, 57, 1154-1167.	4.9	165

#	Article	IF	CITATIONS
19	Symptomâ€relieving and neuroprotective effects of the phytocannabinoid Δ ⁹ â€THCV in animal models of Parkinson's disease. British Journal of Pharmacology, 2011, 163, 1495-1506.	5.4	158
20	Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 200-208.	4.8	154
21	Enhancement of Anandamide Formation in the Limbic Forebrain and Reduction of Endocannabinoid Contents in the Striatum of Δ ⁹ â€Tetrahydrocannabinolâ€Tolerant Rats. Journal of Neurochemistry, 2000, 74, 1627-1635.	3.9	144
22	A restricted population of CB ₁ cannabinoid receptors with neuroprotective activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8257-8262.	7.1	136
23	Cannabinoid–Dopamine Interaction in the Pathophysiology and Treatment of CNS Disorders. CNS Neuroscience and Therapeutics, 2010, 16, e72-91.	3.9	135
24	Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington's disease. Journal of Neurochemistry, 2003, 84, 1097-1109.	3.9	133
25	Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiology of Disease, 2005, 20, 207-217.	4.4	131
26	Chronic exposure to morphine, cocaine or ethanol in rats produced different effects in brain cannabinoid CB1 receptor binding and mRNA levels. Drug and Alcohol Dependence, 2002, 66, 77-84.	3.2	127
27	The endogenous cannabinoid system and the basal ganglia. , 2002, 95, 137-152.		126
28	Cannabidiol administration after hypoxia–ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology, 2012, 63, 776-783.	4.1	122
29	Cannabidiol reduced the striatal atrophy caused 3â€nitropropionic acid <i>in vivo</i> by mechanisms independent of the activation of cannabinoid, vanilloid TRPV ₁ and adenosine A _{2A} receptors. European Journal of Neuroscience, 2007, 26, 843-851.	2.6	120
30	A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice. PLoS ONE, 2010, 5, e11464.	2.5	119
31	A Cannabigerol Quinone Alleviates Neuroinflammation in a Chronic Model of Multiple Sclerosis. Journal of Neurolmmune Pharmacology, 2012, 7, 1002-1016.	4.1	119
32	Different Susceptibility to the Parkinson's Toxin MPTP in Mice Lacking the Redox Master Regulator Nrf2 or Its Target Gene Heme Oxygenase-1. PLoS ONE, 2010, 5, e11838.	2.5	118
33	Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington's disease. Synapse, 2002, 44, 23-35.	1.2	114
34	Hypolocomotor effects in rats of capsaicin and two long chain capsaicin homologues. European Journal of Pharmacology, 2001, 420, 123-131.	3.5	113
35	Transthyretin is involved in depression-like behaviour and exploratory activity. Journal of Neurochemistry, 2004, 88, 1052-1058.	3.9	111
36	Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications. Neurotherapeutics, 2015, 12, 793-806.	4.4	108

#	Article	IF	CITATIONS
37	Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Frontiers in Neuroscience, 2016, 10, 406.	2.8	108
38	Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington's disease. Brain Research, 2002, 929, 236-242.	2.2	107
39	Role of CB2 receptors in neuroprotective effects of cannabinoids. Molecular and Cellular Endocrinology, 2008, 286, S91-S96.	3.2	105
40	A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's disease. Journal of Neurology, 2016, 263, 1390-1400.	3.6	105
41	Cannabinoids and gene expression during brain development. Neurotoxicity Research, 2004, 6, 389-401.	2.7	101
42	Role of endocannabinoids in brain development. Life Sciences, 1999, 65, 725-736.	4.3	100
43	Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sciences, 2000, 66, 485-494.	4.3	100
44	Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson's disease. Brain Research, 2006, 1073-1074, 209-219.	2.2	99
45	Prospects for cannabinoid therapies in basal ganglia disorders. British Journal of Pharmacology, 2011, 163, 1365-1378.	5.4	98
46	Natural Cannabinoids Improve Dopamine Neurotransmission and Tau and Amyloid Pathology in a Mouse Model of Tauopathy. Journal of Alzheimer's Disease, 2013, 35, 525-539.	2.6	98
47	Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. Journal of Biological Chemistry, 2014, 289, 21960-21972.	3.4	95
48	Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. Handbook of Experimental Pharmacology, 2015, 231, 233-259.	1.8	94
49	In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. European Journal of Pharmacology, 2004, 484, 249-257.	3.5	92
50	Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington's disease. NeuroReport, 2001, 12, 2125-2129.	1.2	91
51	Involvement of vanilloid-like receptors in the effects of anandamide on motor behavior and nigrostriatal dopaminergic activity: in vivo and in vitro evidence. Brain Research, 2004, 1007, 152-159.	2.2	91
52	Neuroprotective effects of phytocannabinoidâ€based medicines in experimental models of Huntington's disease. Journal of Neuroscience Research, 2011, 89, 1509-1518.	2.9	84
53	Design, Synthesis, and Biological Evaluation of New Inhibitors of the Endocannabinoid Uptake: Comparison with Effects on Fatty Acid Amidohydrolase. Journal of Medicinal Chemistry, 2003, 46, 1512-1522.	6.4	83
54	Identification of CB2 receptors in human nigral neurons that degenerate in Parkinson's disease. Neuroscience Letters, 2015, 587, 1-4.	2.1	82

#	Article	IF	CITATIONS
55	Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochemical Pharmacology, 2005, 70, 446-452.	4.4	81
56	Sativex-like Combination of Phytocannabinoids is Neuroprotective in Malonate-Lesioned Rats, an Inflammatory Model of Huntington's Disease: Role of CB ₁ and CB ₂ Receptors. ACS Chemical Neuroscience, 2012, 3, 400-406.	3.5	81
57	Cannabinoids and Neuroprotection in Basal Ganglia Disorders. Molecular Neurobiology, 2007, 36, 82-91.	4.0	79
58	The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opinion on Therapeutic Targets, 2010, 14, 387-404.	3.4	78
59	Identification of Endocannabinoids and Cannabinoid CB ₁ Receptor mRNA in the Pituitary Gland. Neuroendocrinology, 1999, 70, 137-145.	2.5	78
60	Blockade of cannabinoid CB ₁ receptor function protects against <i>inâ€fvivo</i> disseminating brain damage following NMDAâ€induced excitotoxicity. Journal of Neurochemistry, 2002, 82, 154-158.	3.9	76
61	Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochemical Pharmacology, 2018, 157, 67-84.	4.4	75
62	Changes in endocannabinoid contents in reward-related brain regions of alcohol-exposed rats, and their possible relevance to alcohol relapse. British Journal of Pharmacology, 2004, 143, 455-464.	5.4	73
63	Short-term exposure to alcohol in rats affects brain levels of anandamide, other N-acylethanolamines and 2-arachidonoyl-glycerol. Neuroscience Letters, 2007, 421, 270-274.	2.1	73
64	The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Scientific Reports, 2016, 6, 21703.	3.3	73
65	UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington's disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. European Neuropsychopharmacology, 2006, 16, 7-18.	0.7	70
66	Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology, 2012, 62, 2299-2308.	4.1	70
67	Effects of perinatal exposure to Δ9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain. Journal of Molecular Neuroscience, 1996, 7, 291-308.	2.3	69
68	Design, Synthesis and Biological Evaluation of Novel Arachidonic Acid Derivatives as Highly Potent and Selective Endocannabinoid Transporter Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 4505-4508.	6.4	69
69	The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death and Disease, 2013, 4, e862-e862.	6.3	69
70	Effects of cannabinoids in the rat model of Huntington's disease generated by an intrastriatal injection of malonate. NeuroReport, 2003, 14, 813-816.	1.2	66
71	Cannabinoids: Novel Medicines for the Treatment of Huntingtons Disease. Recent Patents on CNS Drug Discovery, 2012, 7, 41-48.	0.9	64
72	UCM707, a potent and selective inhibitor of endocannabinoid uptake, potentiates hypokinetic and antinociceptive effects of anandamide. European Journal of Pharmacology, 2002, 449, 99-103.	3.5	63

#	Article	IF	CITATIONS
73	Changes in cannabinoid CB1receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse, 2001, 41, 195-202.	1.2	62
74	Behavioral and molecular changes elicited by acute administration of SR141716 to Δ9-tetrahydrocannabinol-tolerant rats: an experimental model of cannabinoid abstinence. Drug and Alcohol Dependence, 2004, 74, 159-170.	3.2	62
75	Time-dependent differences of repeated administration with Δ9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by μ-opioid and CB1-cannabinoid receptors in the caudate–putamen. Molecular Brain Research, 1999, 67, 148-157.	2.3	61
76	The Endocannabinoid System in Huntingtons Disease. Current Pharmaceutical Design, 2008, 14, 2317-2325.	1.9	61
77	VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington's disease. Scientific Reports, 2016, 6, 29789.	3.3	61
78	A <scp>S</scp> ativex [®] â€like combination of phytocannabinoids as a diseaseâ€modifying therapy in a viral model of multiple sclerosis. British Journal of Pharmacology, 2015, 172, 3579-3595.	5.4	58
79	Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo. NeuroReport, 2004, 15, 2375-2379.	1.2	57
80	Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. Neuropharmacology, 2013, 75, 155-163.	4.1	57
81	The hypothalamic levels of the endocannabinoid, anandamide, peak immediately before the onset of puberty in female rats. Life Sciences, 2002, 70, 1407-1414.	4.3	56
82	Cannabinoid–dopamine interactions in the physiology and physiopathology of the basal ganglia. British Journal of Pharmacology, 2016, 173, 2069-2079.	5.4	56
83	Cannabinoid CB1 receptors colocalize with tyrosine hydroxylase in cultured fetal mesencephalic neurons and their activation increases the levels of this enzyme. Brain Research, 2000, 857, 56-65.	2.2	55
84	Changes in Endocannabinoid Receptors and Enzymes in the Spinal Cord of <scp>SOD</scp> 1 ^{G93A} Transgenic Mice and Evaluation of a Sativex [®] â€like Combination of Phytocannabinoids: Interest for Future Therapies in Amyotrophic Lateral Sclerosis. CNS Neuroscience and Therapeutics, 2014, 20, 809-815.	3.9	54
85	Changes in <scp>CB₁</scp> and <scp>CB₂</scp> receptors in the postâ€mortem cerebellum of humans affected by spinocerebellar ataxias. British Journal of Pharmacology, 2014, 171, 1472-1489.	5.4	53
86	Endocannabinoids and basal ganglia functionality. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, 66, 257-267.	2.2	52
87	Cannabinoids and Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2009, 8, 432-439.	1.4	52
88	Extrapyramidal and neuroendocrine effects of AM404, an inhibitor of the carrier-mediated transport of anandamide. Life Sciences, 1999, 65, 327-336.	4.3	51
89	Persistent penetration of MPTP through the nasal route induces Parkinson's disease in mice. European Journal of Neuroscience, 2006, 24, 1874-1884.	2.6	49
90	Perinatal Δ 9 -Tetrahydrocannabinol Exposure Augmented the Magnitude of Motor Inhibition Caused by GABA B , but not GABA A , Receptor Agonists in Adult Rats. Neurotoxicology and Teratology, 1999, 21, 277-283.	2.4	47

#	Article	IF	CITATIONS
91	Benefits of VCE-003.2, a cannabigerol quinone derivative, against inflammation-driven neuronal deterioration in experimental Parkinson's disease: possible involvement of different binding sites at the PPARγ receptor. Journal of Neuroinflammation, 2018, 15, 19.	7.2	47
92	Prenatal cannabinoid exposure and gene expression for neural adhesion molecule L1 in the fetal rat brain. Developmental Brain Research, 2003, 147, 201-207.	1.7	46
93	Up-regulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2017, 10, 551-558.	2.4	46
94	Targeting glial cannabinoid <scp>CB₂</scp> receptors to delay the progression of the pathological phenotype in <scp>TDPâ€43</scp> (<scp>A315T</scp>) transgenic mice, a model of amyotrophic lateral sclerosis. British Journal of Pharmacology, 2019, 176, 1585-1600.	5.4	46
95	Neuroprotective effects of the cannabigerol quinone derivative VCE-003.2 in SOD1G93A transgenic mice, an experimental model of amyotrophic lateral sclerosis. Biochemical Pharmacology, 2018, 157, 217-226.	4.4	45
96	Prenatal Δ9-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex-dependent differences. Developmental Brain Research, 2000, 120, 77-81.	1.7	44
97	Effects of cannabinoids on adrenaline release from adrenal medullary cells. British Journal of Pharmacology, 2001, 134, 1319-1327.	5.4	44
98	Changes in the endocannabinoid signaling system in CNS structures of TDP-43 transgenic mice: relevance for a neuroprotective therapy in TDP-43-related disorders. Journal of Neurolmmune Pharmacology, 2015, 10, 233-244.	4.1	44
99	Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1δ kinase inhibitor treatment. Scientific Reports, 2020, 10, 4449.	3.3	44
100	Cannabinoids and Neuroprotection in Motor-Related Disorders. CNS and Neurological Disorders - Drug Targets, 2007, 6, 377-387.	1.4	43
101	Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer's disease. European Journal of Medicinal Chemistry, 2014, 73, 56-72.	5.5	43
102	Design, synthesis and biological evaluation of new endocannabinoid transporter inhibitors. European Journal of Medicinal Chemistry, 2003, 38, 403-412.	5.5	42
103	Synthetic cannabinoid quinones: Preparation, inÂvitro antiproliferative effects and inÂvivo prostate antitumor activity. European Journal of Medicinal Chemistry, 2013, 70, 111-119.	5.5	42
104	The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoidâ€based therapies to improve on the poor current therapeutic outcomes. British Journal of Pharmacology, 2019, 176, 1370-1383.	5.4	41
105	Down-regulation of the AMPA glutamate receptor subunits GluR1 and GluR2/3 in the rat cerebellum following pre- and perinatal l"9-tetrahydrocannabinol exposure. Cerebellum, 2004, 3, 66-74.	2.5	39
106	Effects of perinatal exposure to Δ9-tetrahydrocannabinol on operant morphine-reinforced behavior. Pharmacology Biochemistry and Behavior, 2003, 75, 577-584.	2.9	38
107	Arvanil, a hybrid endocannabinoid and vanilloid compound, behaves as an antihyperkinetic agent in a rat model of Huntington's disease. Brain Research, 2005, 1050, 210-216.	2.2	37
108	Chronic Δ9-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 372, 313-317.	3.0	37

#	Article	IF	CITATIONS
109	Enhanced striatal glutamate release after the administration of rimonabant to 6-hydroxydopamine-lesioned rats. Neuroscience Letters, 2008, 438, 10-13.	2.1	35
110	CB1 receptor blockade reduces the anxiogenic-like response and ameliorates the neurochemical imbalances associated with alcohol withdrawal in rats. Neuropharmacology, 2008, 54, 976-988.	4.1	35
111	Region-dependent changes in endocannabinoid transmission in the brain of morphine-dependent rats. Addiction Biology, 2003, 8, 159-166.	2.6	34
112	Changes in CB1 receptors in motor-related brain structures of chronic relapsing experimental allergic encephalomyelitis mice. Brain Research, 2006, 1107, 199-205.	2.2	34
113	Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. Multiple Sclerosis Journal, 2013, 19, 1896-1904.	3.0	34
114	The endocannabinoid system is altered in the postâ€mortem prefrontal cortex of alcoholic subjects. Addiction Biology, 2015, 20, 773-783.	2.6	34
115	Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis. Journal of Medicinal Chemistry, 2016, 59, 6753-6771.	6.4	34
116	Cannabinoid CB1 receptors in the basal ganglia and motor response to activation or blockade of these receptors in parkin-null mice. Brain Research, 2005, 1046, 195-206.	2.2	33
117	Effects of a short-term exposure to alcohol in rats on FAAH enzyme and CB1 receptor in different brain areas. Drug and Alcohol Dependence, 2009, 99, 354-358.	3.2	33
118	Selective, Nontoxic CB ₂ Cannabinoid <i>o</i> Quinone with in Vivo Activity against Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 2015, 58, 2256-2264.	6.4	33
119	Loss of cannabinoid CB1 receptors in the basal ganglia in the late akinetic phase of rats with experimental Huntington's disease. Neurotoxicity Research, 2002, 4, 601-608.	2.7	32
120	Cannabinoids in neurodegeneration and neuroprotection. , 2005, , 79-109.		32
121	Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity inÂvivo in R6/2 Huntington mice. Neurobiology of Aging, 2014, 35, 2858-2869.	3.1	32
122	The endocannabinoid system in neuropathological states. International Review of Psychiatry, 2009, 21, 172-180.	2.8	30
123	The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ-tetrahydrocannabinol acting through CB1 receptors. Multiple Sclerosis and Related Disorders, 2015, 4, 505-511.	2.0	30
124	<scp>VCE</scp> â€004.3, a cannabidiol aminoquinone derivative, prevents bleomycinâ€induced skin fibrosis and inflammation through PPARγ―and CB ₂ receptorâ€dependent pathways. British Journal of Pharmacology, 2018, 175, 3813-3831.	5.4	30
125	An Overview of Parkinsons Disease and the Cannabinoid System and Possible Benefits of Cannabinoid-Based Treatments. Current Medicinal Chemistry, 2006, 13, 3705-3718.	2.4	28
126	Acyl-based anandamide uptake inhibitors cause rapid toxicity to C6 glioma cells at pharmacologically relevant concentrations. Journal of Neurochemistry, 2006, 99, 677-688.	3.9	27

JAVIER FERNANDEZ-RUIZ

#	Article	IF	CITATIONS
127	Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain. European Journal of Neuroscience, 2010, 31, 1414-1422.	2.6	27
128	Chromenopyrazoles: Nonâ€psychoactive and Selective CB ₁ Cannabinoid Agonists with Peripheral Antinociceptive Properties. ChemMedChem, 2012, 7, 452-463.	3.2	27
129	Targeting the cannabinoid CB 2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice. Pharmacological Research, 2016, 110, 181-192.	7.1	25
130	Biological characterization of PM226, a chromenoisoxazole, as a selective CB 2 receptor agonist with neuroprotective profile. Pharmacological Research, 2016, 110, 205-215.	7.1	25
131	Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson's disease. Neurobiology of Disease, 2020, 141, 104892.	4.4	24
132	Pharmacokinetics of Sativex® in Dogs: Towards a Potential Cannabinoid-Based Therapy for Canine Disorders. Biomolecules, 2020, 10, 279.	4.0	24
133	Possible therapeutic applications of cannabis in the neuropsychopharmacology field. European Neuropsychopharmacology, 2020, 36, 217-234.	0.7	24
134	Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTPγS binding and cannabinoid receptor mRNA levels in several brain structures of adult male rats chronically exposed to R-methanandamide. Neurochemistry International, 1999, 34, 473-482.	3.8	23
135	Cannabinoid CB1 Receptors are Early DownRegulated Followed by a Further UpRegulation in the Basal Ganglia of Mice with Deletion of Specific Park Genes. , 2009, , 269-275.		23
136	Pharmacological Activation/Inhibition of the Cannabinoid System Affects Alcohol Withdrawal-Induced Neuronal Hypersensitivity to Excitotoxic Insults. PLoS ONE, 2011, 6, e23690.	2.5	23
137	Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience, 2016, 339, 191-209.	2.3	22
138	Development of An Oral Treatment with the PPAR-γ-Acting Cannabinoid VCE-003.2 Against the Inflammation-Driven Neuronal Deterioration in Experimental Parkinson's Disease. Molecules, 2019, 24, 2702.	3.8	21
139	Changes in prodynorphin and POMC gene expression in several brain regions of rat fetuses prenatally exposed to Δ-tetrahydrocannabinol. Neurotoxicity Research, 2002, 4, 211-218.	2.7	20
140	Effects of a Sativex-Like Combination of Phytocannabinoids on Disease Progression in R6/2 Mice, an Experimental Model of Huntington's Disease. International Journal of Molecular Sciences, 2017, 18, 684.	4.1	20
141	Analysis of endocannabinoid receptors and enzymes in the post-mortem motor cortex and spinal cord of amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 377-386.	1.7	20
142	Discovery of Homobivalent Bitopic Ligands of the Cannabinoid CB ₂ Receptor**. Chemistry - A European Journal, 2020, 26, 15839-15842.	3.3	20
143	Novel antiobesity agents: Synthesis and pharmacological evaluation of analogues of Rimonabant and of LH21. Bioorganic and Medicinal Chemistry, 2013, 21, 1708-1716.	3.0	19
144	Effects of Neonatal Exposure to Methamphetamine: Catecholamine Levels in Brain Areas of the Developing Rat. Annals of the New York Academy of Sciences, 2004, 1025, 602-611.	3.8	18

#	Article	IF	CITATIONS
145	Effects of inhibition of fatty acid amide hydrolase vs. the anandamide membrane transporter on TRPV1-mediated calcium responses in adult DRG neurons; the role of CB1receptors. European Journal of Neuroscience, 2006, 24, 3489-3495.	2.6	18
146	Tricyclic pyrazoles. Part 8. Synthesis, biological evaluation and modelling of tricyclic pyrazole carboxamides as potential CB2 receptor ligands with antagonist/inverse agonist properties. European Journal of Medicinal Chemistry, 2016, 112, 66-80.	5.5	18
147	Neonatal Methamphetamine in the Rat: Evidence for Genderâ€specific Differences upon Tyrosine Hydroxylase Enzyme in the Dopaminergic Nigrostriatal System. Annals of the New York Academy of Sciences, 2000, 914, 431-438.	3.8	17
148	Decreased cannabinoid CB1 receptor mRNA levels and immunoreactivity in pituitary hyperplasia induced by prolonged exposure to estrogens. Pituitary, 2000, 3, 221-227.	2.9	16
149	Exposure to cannabinoids in the development of endogenous cannabinoid system. Neurotoxicity Research, 2002, 4, 363-372.	2.7	16
150	Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: Evidence for a role of these receptors in axonal growth and guidance. Neuroscience, 2008, 153, 687-699.	2.3	16
151	Δ ⁹ â€Tetrahydrocannabinolic acid alleviates collagenâ€induced arthritis: Role of PPARγ and CB ₁ receptors. British Journal of Pharmacology, 2020, 177, 4034-4054.	5.4	16
152	Neuroprotection with the cannabigerol quinone derivative VCE-003.2 and its analogs CBGA-Q and CBGA-Q CBGA-Q and CBGA-Q-Salt in Parkinson's disease using 6-hydroxydopamine-lesioned mice. Molecular and Cellular Neurosciences, 2021, 110, 103583.	2.2	16
153	New pyridazinone-4-carboxamides as new cannabinoid receptor type-2 inverse agonists: Synthesis, pharmacological data and molecular docking. European Journal of Medicinal Chemistry, 2017, 127, 398-412.	5.5	15
154	Prenatal Exposure to Methamphetamine in the Rat. Annals of the New York Academy of Sciences, 2002, 965, 68-77.	3.8	14
155	Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB 2 receptor antagonists. European Journal of Medicinal Chemistry, 2015, 101, 651-667.	5.5	14
156	The Endocannabinoid System in the Physiology and Pathology of the Basal Ganglia. , 2008, , 423-483.		14
157	Therapeutic Potential of the Endocannabinoid System in the Brain. Mini-Reviews in Medicinal Chemistry, 2005, 5, 609-617.	2.4	13
158	The activation of cannabinoid receptors during early postnatal development reduces the expression of cell adhesion molecule L1 in the rat brain. Brain Research, 2007, 1145, 48-55.	2.2	13
159	Cannabinoid signaling system. Cell Adhesion and Migration, 2008, 2, 246-248.	2.7	13
160	Cannabinoids, multiple sclerosis and neuroprotection. Expert Review of Clinical Pharmacology, 2009, 2, 645-660.	3.1	13
161	Identification of receptors and enzymes for endocannabinoids in NSC-34 cells: Relevance for in vitro studies with cannabinoids in motor neuron diseases. Neuroscience Letters, 2012, 508, 67-72.	2.1	13
162	Combining rimonabant and fentanyl in a single entity: preparation and pharmacological results. Drug Design, Development and Therapy, 2014, 8, 263.	4.3	13

#	Article	IF	CITATIONS
163	Endocannabinoid-Hydrolysing Enzymes in the Post-Mortem Cerebellum of Humans Affected by Hereditary Autosomal Dominant Ataxias. Pathobiology, 2014, 81, 149-159.	3.8	13
164	Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome. Pharmacology Research and Perspectives, 2016, 4, e00220.	2.4	13
165	Neuropathological Characterization of a Dravet Syndrome Knock-In Mouse Model Useful for Investigating Cannabinoid Treatments. Frontiers in Molecular Neuroscience, 2020, 13, 602801.	2.9	13
166	Targeting the CB ₂ receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. British Journal of Pharmacology, 2021, 178, 1373-1387.	5.4	13
167	Inactivation of the CB ₂ receptor accelerated the neuropathological deterioration in TDPâ€43 transgenic mice, a model of amyotrophic lateral sclerosis. Brain Pathology, 2021, 31, e12972.	4.1	13
168	(+)-trans-Cannabidiol-2-hydroxy pentyl is a dual CB1R antagonist/CB2R agonist that prevents diabetic nephropathy in mice. Pharmacological Research, 2021, 169, 105492.	7.1	13
169	Description of a Bivalent Cannabinoid Ligand with Hypophagic Properties. Archiv Der Pharmazie, 2013, 346, 171-179.	4.1	12
170	Identification of Novel GPR55 Modulators Using Cell-Impedance-Based Label-Free Technology. Journal of Medicinal Chemistry, 2016, 59, 1840-1853.	6.4	12
171	Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies. Methods in Enzymology, 2017, 593, 175-198.	1.0	12
172	Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets. Frontiers in Molecular Neuroscience, 2019, 12, 94.	2.9	12
173	Neuroprotection with the Cannabidiol Quinone Derivative VCE-004.8 (EHP-101) against 6-Hydroxydopamine in Cell and Murine Models of Parkinson's Disease. Molecules, 2021, 26, 3245.	3.8	11
174	Structure–Effect Relationships of Novel Semi-Synthetic Cannabinoid Derivatives. Frontiers in Pharmacology, 2019, 10, 1284.	3.5	10
175	Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats. Journal of Psychopharmacology, 2019, 33, 882-893.	4.0	10
176	Preclinical Investigation in Neuroprotective Effects of the GPR55 Ligand VCE-006.1 in Experimental Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Molecules, 2021, 26, 7643.	3.8	10
177	Neurochemical effects of the endocannabinoid uptake inhibitor UCM707 in various rat brain regions. Life Sciences, 2007, 80, 979-988.	4.3	9
178	Endocannabinoids and amyotrophic lateral sclerosis. , 2015, , 99-123.		9
179	Analogues of cannabinoids as multitarget drugs in the treatment of Alzheimer's disease. European Journal of Pharmacology, 2021, 895, 173875.	3.5	9
180	Altered CB1 receptor coupling to G-proteins in the post-mortem caudate nucleus and cerebellum of alcoholic subjects. Journal of Psychopharmacology, 2015, 29, 1137-1145.	4.0	8

JAVIER FERNANDEZ-RUIZ

#	Article	IF	CITATIONS
181	Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB 1 receptor ligand antagonists. Bioorganic and Medicinal Chemistry, 2018, 26, 295-307.	3.0	8
182	Endocannabinoid Transporter Inhibitors. Current Medicinal Chemistry - Central Nervous System Agents, 2002, 2, 129-141.	0.5	8
183	Uso de los cannabinoides a través de la historia. Revista De Psicologia De La Salud, 2000, 12, 19.	0.5	7
184	Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3. PLoS ONE, 2017, 12, e0176521.	2.5	6
185	BiP Heterozigosity Aggravates Pathological Deterioration in Experimental Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 12533.	4.1	5
186	Preclinical investigation of β-caryophyllene as a therapeutic agent in an experimental murine model of Dravet syndrome. Neuropharmacology, 2022, 205, 108914.	4.1	5
187	Synthesis of a novel CB2 cannabinoid-porphyrin conjugate based on an antitumor chromenopyrazoledione. Journal of Porphyrins and Phthalocyanines, 2017, 21, 67-76.	0.8	4
188	Neurodegenerative Disorders Other Than Multiple Sclerosis. , 2014, , 505-525.		4
189	Design and Synthesis of Novel Cannabinoid Ligands Based on a 1,2,3- triazole Scaffold. Letters in Drug Design and Discovery, 2012, 10, 169-172.	0.7	4
190	Recent advances in the pathogenesis and therapeutics of amyotrophic lateral sclerosis. British Journal of Pharmacology, 2021, 178, 1253-1256.	5.4	3
191	Preface: Cannabinoids as New Tools for the Treatment of Neurological Disorders. Molecular Neurobiology, 2007, 36, 1-2.	4.0	2
192	Sistema cannabinoide endógeno: ligandos y receptores acoplados a mecanismos de transducción de señales. Revista De Psicologia De La Salud, 2000, 12, 59.	0.5	1
193	Endocannabinoids and Dopamine-Related Functions in the CNS. , 2005, , .		0
194	Corrigendum to "Biological characterization of PM226, a chromenoisoxazole, as a selective CB2 receptor agonist with neuroprotective profile―[Pharmacol. Res. 110 (August 2016) (2016) 205–215]. Pharmacological Research, 2017, 120, 302.	7.1	0
195	Preface: Why a Special Issue on cannabinoid research in Spain?. Biochemical Pharmacology, 2018, 157, 1-7.	4.4	0
196	Chapter 2. Phytocannabinoids Versus Endocannabinoids. A Modern View of the Endocannabinoid System. RSC Drug Discovery Series, 2020, , 10-47.	0.3	0