
Andrew R Judge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4544435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hsp70 overexpression inhibits NFâ€̂PB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB Journal, 2008, 22, 3836-3845.	0.2	255
2	Models of accelerated sarcopenia: Critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Research Reviews, 2010, 9, 369-383.	5.0	244
3	Oxidative stress and disuse muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 240-245.	1.3	198
4	Mitochondrial defects and oxidative damage in patients with peripheral arterial disease. Free Radical Biology and Medicine, 2006, 41, 262-269.	1.3	188
5	Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB Journal, 2012, 26, 987-1000.	0.2	163
6	FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. American Journal of Physiology - Cell Physiology, 2010, 298, C38-C45.	2.1	153
7	Basic Science Review: The Myopathy of Peripheral Arterial Occlusive Disease: Part 2. Oxidative Stress, Neuropathy, and Shift in Muscle Fiber Type. Vascular and Endovascular Surgery, 2008, 42, 101-112.	0.3	152
8	Role for lκBα, but not c-Rel, in skeletal muscle atrophy. American Journal of Physiology - Cell Physiology, 2007, 292, C372-C382.	2.1	96
9	Loss of the Inducible Hsp70 Delays the Inflammatory Response to Skeletal Muscle Injury and Severely Impairs Muscle Regeneration. PLoS ONE, 2013, 8, e62687.	1.1	96
10	HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. Journal of Cell Science, 2014, 127, 1441-53.	1.2	95
11	p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. American Journal of Physiology - Cell Physiology, 2011, 300, C1490-C1501.	2.1	93
12	Diaphragm and ventilatory dysfunction during cancer cachexia. FASEB Journal, 2013, 27, 2600-2610.	0.2	90
13	Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer, 2014, 14, 997.	1.1	88
14	Hsp27 inhibits IKKβâ€induced NFâ€Î°Î• activity and skeletal muscle atrophy. FASEB Journal, 2009, 23, 3415-3423.	0.2	75
15	Cancer cachexia decreases specific force and accelerates fatigue in limb muscle. Biochemical and Biophysical Research Communications, 2013, 435, 488-492.	1.0	67
16	Life long calorie restriction increases heat shock proteins and proteasome activity in soleus muscles of Fisher 344 rats. Experimental Gerontology, 2005, 40, 37-42.	1.2	66
17	Tumourâ€derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumourâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1109-1120.	2.9	63
18	Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochemical and Biophysical Research Communications, 2011, 405, 491-496.	1.0	58

ANDREW R JUDGE

#	Article	IF	CITATIONS
19	Skeletal Muscle Fibrosis in Pancreatic Cancer Patients with Respect to Survival. JNCI Cancer Spectrum, 2018, 2, pky043.	1.4	54
20	Botulinum neurotoxin type A causes shifts in myosin heavy chain composition in muscle. Toxicon, 2005, 46, 196-203.	0.8	53
21	MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. ELife, 2019, 8, .	2.8	49
22	IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy. Cancers, 2019, 11, 1863.	1.7	38
23	Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy. Experimental Gerontology, 2012, 47, 100-108.	1.2	37
24	A clinically applicable muscular index predicts long-term survival in resectable pancreatic cancer. Surgery, 2017, 161, 930-938.	1.0	36
25	Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy. PLoS ONE, 2015, 10, e0136247.	1.1	35
26	NAD(P)H oxidase subunit p47 ^{phox} is elevated, and p47 ^{phox} knockout prevents diaphragm contractile dysfunction in heart failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L497-L505.	1.3	33
27	Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease. Pancreas, 2017, 46, 813-819.	0.5	33
28	Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology, 2009, 10, 605-611.	2.0	29
29	Mas Receptor Activation Slows Tumor Growth and Attenuates Muscle Wasting in Cancer. Cancer Research, 2019, 79, 706-719.	0.4	28
30	Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 820-837.	2.9	28
31	MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Research, 2020, 80, 1861-1874.	0.4	27
32	Human pancreatic cancer xenografts recapitulate key aspects of cancer cachexia. Oncotarget, 2017, 8, 1177-1189.	0.8	26
33	Diaphragm Atrophy and Contractile Dysfunction in a Murine Model of Pulmonary Hypertension. PLoS ONE, 2013, 8, e62702.	1.1	23
34	Racial and ethnic disparities in a stateâ€wide registry of patients with pancreatic cancer and an exploratory investigation of cancer cachexia as a contributor to observed inequities. Cancer Medicine, 2019, 8, 3314-3324.	1.3	21
35	Colon 26 adenocarcinoma (C26)-induced cancer cachexia impairs skeletal muscle mitochondrial function and content. Journal of Muscle Research and Cell Motility, 2019, 40, 59-65.	0.9	21
36	FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 421-442.	2.9	19

ANDREW R JUDGE

#	Article	IF	CITATIONS
37	Pharmacological targeting of mitochondrial function and reactive oxygen species production prevents colon 26 cancer-induced cardiorespiratory muscle weakness. Oncotarget, 2020, 11, 3502-3514.	0.8	19
38	Cold shock protein RBM3 attenuates atrophy and induces hypertrophy in skeletal muscle. Journal of Muscle Research and Cell Motility, 2018, 39, 35-40.	0.9	18
39	Differential expression of <i>HDAC</i> and <i>HAT</i> genes in atrophying skeletal muscle. Muscle and Nerve, 2015, 52, 1098-1101.	1.0	13
40	Local and Systemic Cytokine Profiling for Pancreatic Ductal Adenocarcinoma to Study Cancer Cachexia in an Era of Precision Medicine. International Journal of Molecular Sciences, 2018, 19, 3836.	1.8	13
41	Nicotine Induces IL-8 Secretion from Pancreatic Cancer Stroma and Worsens Cancer-Induced Cachexia. Cancers, 2020, 12, 329.	1.7	13
42	Phase II Study of 5-Fluorouracil, Oxaliplatin plus Dasatinib (FOLFOX-D) in First-Line Metastatic Pancreatic Adenocarcinoma. Oncologist, 2021, 26, 825-e1674.	1.9	11
43	Cancer cachexia impairs neural respiratory drive in hypoxia but not hypercapnia. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 63-72.	2.9	9
44	Janus kinase inhibition prevents cancer- and myocardial infarction-mediated diaphragm muscle weakness in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R707-R710.	0.9	8
45	An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes. Journal of Experimental Medicine, 2019, 216, 2479-2491.	4.2	7
46	The Florida Pancreas Collaborative Next-Generation Biobank: Infrastructure to Reduce Disparities and Improve Survival for a Diverse Cohort of Patients with Pancreatic Cancer. Cancers, 2021, 13, 809.	1.7	7
47	Osteopenia is associated with wasting in pancreatic adenocarcinoma and predicts survival after surgery. Cancer Medicine, 2022, 11, 50-60.	1.3	7
48	Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy. Cells, 2022, 11, 1893.	1.8	6
49	Determination of Gene Promoter Activity in Skeletal Muscles In Vivo. Methods in Molecular Biology, 2012, 798, 461-472.	0.4	4
50	Forelimb muscle plasticity following unilateral cervical spinal cord injury. Muscle and Nerve, 2016, 53, 475-478.	1.0	4
	Meeting Synopsis: Advances in Skeletal Muscle Biology in Health and Disease (Gainesville, Florida,) Tj ETQq1 1	0.784314 r	gBT /Overlo <mark>c</mark> l
51	Hypertrophy―and "muscle Force, Calcium Handling, and Stress Response― Frontiers in Physiology, 2012. 3. 200.	1.3	3
52	Foxo Signaling is Required for Muscle Atrophy Associated with Sepsis. Medicine and Science in Sports and Exercise, 2010, 42, 66.	0.2	1
53	Meeting Synopsis: Advances in Skeletal Muscle Biology in Health and Disease (Gainesville, Florida,) Tj ETQq1 1 Research― Frontiers in Physiology, 2012, 3, 201.	0.784314 r 1.3	gBT /Overloc O
54	Putting the spice in weaning*. Critical Care Medicine, 2012, 40, 1022-1023.	0.4	0

#	Article	IF	CITATIONS
55	Temporal Changes in the Acetylation Profile of Skeletal Muscle Proteins during Atrophy. FASEB Journal, 2013, 27, lb824.	0.2	Ο
56	Interleukinâ€8 is Released from Human Pancreatic Tumor and Stromal Cells, and Causative in Skeletal Muscle Atrophy. FASEB Journal, 2019, 33, lb653.	0.2	0