Melissa S Jurica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4544358/publications.pdf

Version: 2024-02-01

430442 377514 36 2,238 18 34 citations h-index g-index papers 41 41 41 2883 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A model for DHX15 mediated disassembly of A-complex spliceosomes. Rna, 2022, 28, 583-595.	1.6	18
2	Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. ACS Chemical Biology, 2021, 16, 520-528.	1.6	8
3	Spliceostatins and Derivatives: Chemical Syntheses and Biological Properties of Potent Splicing Inhibitors. Journal of Natural Products, 2021, 84, 1681-1706.	1.5	13
4	Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Nature Communications, 2021, 12, 4491.	5.8	32
5	A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex. Cell Chemical Biology, 2021, 28, 1145-1157.e6.	2.5	24
6	Design and synthesis of herboxidiene derivatives that potently inhibit <i>in vitro</i> splicing. Organic and Biomolecular Chemistry, 2021, 19, 1365-1377.	1.5	3
7	U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. PLoS ONE, 2021, 16, e0258551.	1.1	O
8	Copper-Catalyzed Stille Cross-Coupling Reaction and Application in the Synthesis of the Spliceostatin Core Structure. Journal of Organic Chemistry, 2020, 85, 8111-8120.	1.7	11
9	Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer. Cell Chemical Biology, 2020, 27, 1359-1370.e8.	2.5	13
10	A two-step probing method to compare lysine accessibility across macromolecular complex conformations. RNA Biology, 2019, 16, 1346-1354.	1.5	0
11	Human RNF113A participates of preâ€mRNA splicing in vitro. Journal of Cellular Biochemistry, 2019, 120, 8764-8774.	1.2	9
12	Prp8 positioning of U5 snRNA is linked to 5′ splice site recognition. Rna, 2018, 24, 769-777.	1.6	13
13	Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of <i>in Vitro</i> Splicing Inhibition. Journal of Organic Chemistry, 2018, 83, 5187-5198.	1.7	21
14	Enantioselective Synthesis of Spliceostatin G and Evaluation of Bioactivity of Spliceostatin G and Its Methyl Ester. Organic Letters, 2018, 20, 96-99.	2.4	15
15	Enantioselective Synthesis of a Cyclopropane Derivative of Spliceostatin A and Evaluation of Bioactivity. Organic Letters, 2018, 20, 7293-7297.	2.4	15
16	Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1381.	3.2	125
17	Design, synthesis and in vitro splicing inhibition of desmethyl and carba-derivatives of herboxidiene. Organic and Biomolecular Chemistry, 2016, 14, 5263-5271.	1.5	16
18	Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages. Rna, 2016, 22, 350-359.	1.6	73

#	Article	IF	Citations
19	The Natural Product N-Palmitoyl-l-leucine Selectively Inhibits Late Assembly of Human Spliceosomes. Journal of Biological Chemistry, 2015, 290, 27524-27531.	1.6	22
20	Nuclear cyclophilins affect spliceosome assembly and function <i>inÂvitro</i> . Biochemical Journal, 2015, 469, 223-233.	1.7	10
21	Enantioselective Synthesis of Spliceostatin E and Evaluation of Biological Activity. Organic Letters, 2014, 16, 6200-6203.	2.4	21
22	Coherence between Cellular Responses and in Vitro Splicing Inhibition for the Anti-tumor Drug Pladienolide B and Its Analogs. Journal of Biological Chemistry, 2014, 289, 1938-1947.	1.6	62
23	Total Synthesis of GEX1Q1, Assignment of C-5 Stereoconfiguration and Evaluation of Spliceosome Inhibitory Activity. Organic Letters, 2014, 16, 3154-3157.	2.4	20
24	Enantioselective Total Syntheses of FR901464 and Spliceostatin A and Evaluation of Splicing Activity of Key Derivatives. Journal of Organic Chemistry, 2014, 79, 5697-5709.	1.7	34
25	Isolation and Accumulation of Spliceosomal Assembly Intermediates. Methods in Molecular Biology, 2014, 1126, 179-192.	0.4	6
26	A High-Throughput Splicing Assay Identifies New Classes of Inhibitors of Human and Yeast Spliceosomes. Journal of Biomolecular Screening, 2013, 18, 1110-1120.	2.6	31
27	Rearrangements within human spliceosomes captured after exon ligation. Rna, 2013, 19, 400-412.	1.6	41
28	Spliceosome Database: a tool for tracking components of the spliceosome. Nucleic Acids Research, 2013, 41, D132-D141.	6.5	121
29	Breaking Up the C Complex Spliceosome Shows Stable Association of Proteins with the Lariat Intron Intermediate. PLoS ONE, 2011, 6, e19061.	1.1	8
30	Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Research, 2010, 38, 6664-6672.	6.5	106
31	Searching for a wrench to throw into the splicing machine. Nature Chemical Biology, 2008, 4, 3-6.	3.9	17
32	Detailed close-ups and the big picture of spliceosomes. Current Opinion in Structural Biology, 2008, 18, 315-320.	2.6	26
33	Three-dimensional structure of C complex spliceosomes by electron microscopy. Nature Structural and Molecular Biology, 2004, 11, 265-269.	3.6	74
34	Pre-mRNA Splicing. Molecular Cell, 2003, 12, 5-14.	4.5	873
35	Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. Rna, 2002, 8, 426-439.	1.6	316
36	Capturing splicing complexes to study structure and mechanism. Methods, 2002, 28, 336-345.	1.9	40