Javier Diéguez-Uribeondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4544322/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	7.1	4,012
2	Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics, 2013, 9, e1003272.	3.5	221
3	Managing invasive crayfish: is there a hope?. Aquatic Sciences, 2011, 73, 185-200.	1.5	215
4	Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycological Research, 1995, 99, 574-578.	2.5	122
5	Analyses of Extracellular Carbohydrates in Oomycetes Unveil the Existence of Three Different Cell Wall Types. Eukaryotic Cell, 2013, 12, 194-203.	3.4	122
6	The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biology Reviews, 2013, 27, 33-42.	4.7	121
7	Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (Oomycetes). Fungal Genetics and Biology, 2009, 46, 365-376.	2.1	120
8	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
9	Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiology Letters, 2010, 312, 192-200.	1.8	97
10	Re-evaluation of the enigmatic species complex Saprolegnia diclina–Saprolegnia parasitica based on morphological, physiological and molecular data. Fungal Genetics and Biology, 2007, 44, 585-601.	2.1	93
11	Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles. PLoS ONE, 2014, 9, e85853.	2.5	78
12	Prevalence of the Crayfish Plague Pathogen <i>Aphanomyces astaci</i> in Invasive American Crayfishes in the Czech Republic. Conservation Biology, 2009, 23, 1204-1213.	4.7	75
13	Title is missing!. Anales Del Jardin Botanico De Madrid, 2004, 61, .	0.4	65
14	Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME Journal, 2014, 8, 2002-2014.	9.8	64
15	Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biology, 2014, 118, 559-578.	2.5	64
16	Repeated zoospore emergence in Saprolegnia parasitica. Mycological Research, 1994, 98, 810-815.	2.5	61
17	The old menace is back: Recent crayfish plague outbreaks in the Czech Republic. Aquaculture, 2008, 274, 208-217.	3.5	60
18	<i>Saprolegnia diclina</i> : another species responsible for the emergent disease ¢€Â~ <i>Saprolegnia</i> infections¢€™ in amphibians. FEMS Microbiology Letters, 2008, 279, 23-29.	1.8	58

#	Article	IF	CITATIONS
19	Saprolegnia parasitica and its virulence on three different species of freshwater crayfish. Aquaculture, 1994, 120, 219-228.	3.5	57
20	Peracetic acid (PAA) treatment is an effective disinfectant against crayfish plague (Aphanomyces) Tj ETQq0 0 0	rgB <u>T</u> /Over	rlock 10 Tf 50
21	Status of the white-clawed crayfish, Austropotamobius pallipes (Lereboullet, 1858), in Spain : distribution and legislation. Knowledge and Management of Aquatic Ecosystems: an International Journal on Aquatic Ecosystems, 2000, , 31-53.	0.4	55
22	Microsatellite markers for direct genotyping of the crayfish plague pathogen Aphanomyces astaci (Oomycetes) from infected host tissues. Veterinary Microbiology, 2014, 170, 317-324.	1.9	52
23	Procambarus clarkii Girard as a vector for the crayfish plague fungus, Aphanomyces astaci Schikora. Aquaculture Research, 1993, 24, 761-765.	1.8	51
24	The North American crayfish Procambarus clarkii is the carrier of the oomycete Aphanomyces astaci in Italy. Biological Invasions, 2011, 13, 359-367.	2.4	51
25	Unravelling the Microbiome of Eggs of the Endangered Sea Turtle Eretmochelys imbricata Identifies Bacteria with Activity against the Emerging Pathogen Fusarium falciforme. PLoS ONE, 2014, 9, e95206.	2.5	51
26	The crayfish plague fungus(Aphanomyces astaci)in Spain. Knowledge and Management of Aquatic Ecosystems: an International Journal on Aquatic Ecosystems, 1997, , 753-763.	0.4	50
27	Monitoring the spore dynamics of Aphanomyces astaci in the ambient water of latent carrier crayfish. Veterinary Microbiology, 2012, 160, 99-107.	1.9	50
28	Drastic bottlenecks in the endangered crayfish species Austropotamobius pallipes in Spain and implications for its colonization history. Heredity, 2001, 86, 431-438.	2.6	47
29	Dose-dependent mortality of the noble crayfish (Astacus astacus) to different strains of the crayfish plague (Aphanomyces astaci). Journal of Invertebrate Pathology, 2014, 115, 86-91.	3.2	45
30	THE DISPERSION OF THE APHANOMYCES ASTACI-CARRIER PACIFASTACUS LENIUSCULUS BY HUMANS REPRESENTS THE MAIN CAUSE OF DISAPPEARANCE OF THE INDIGENOUS CRAYFISH AUSTROPOTAMOBIUS PALLIPES IN NAVARRA. Knowledge and Management of Aquatic Ecosystems: an International Journal on Aquatic Ecosystems, 2006, , 1303-1312.	0.4	42
31	The diversity of the pathogenic Oomycete (Aphanomyces astaci) chitinase genes within the genotypes indicate adaptation to its hosts. Fungal Genetics and Biology, 2012, 49, 635-642.	2.1	42
32	Aspergillus sydowii and Other Potential Fungal Pathogens in Gorgonian Octocorals of the Ecuadorian Pacific. PLoS ONE, 2016, 11, e0165992.	2.5	41
33	MtDNA allows the sensitive detection and haplotyping of the crayfish plague disease agent <i>Aphanomyces astaci</i> showing clues about its origin and migration. Parasitology, 2018, 145, 1210-1218.	1.5	39
34	Crayfish plague in Japan: A real threat to the endemic Cambaroides japonicus. PLoS ONE, 2018, 13, e0195353.	2.5	39
35	Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture, 1996, 140, 247-257.	3.5	38
36	Digital Image Analysis of Internal Light Spots of Appressoria of Colletotrichum acutatum. Phytopathology, 2003, 93, 923-930.	2.2	37

#	Article	IF	CITATIONS
37	AFLP-PCR and RAPD-PCR evidences of the transmission of the pathogen Aphanomyces astaci (Oomycetes) to wild populations of European crayfish from the invasive crayfish species, Procambarus clarkii. Fungal Biology, 2014, 118, 612-620.	2.5	37
38	Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes. PLoS ONE, 2017, 12, e0181226.	2.5	34
39	Subcuticular-Intracellular Hemibiotrophic and Intercellular Necrotrophic Development of Colletotrichum acutatum on Almond. Phytopathology, 2005, 95, 751-758.	2.2	33
40	Money Kills Native Ecosystems: European Crayfish as an Example. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	32
41	Rainbow trout (<i>Oncorhynchus mykiss</i>) threaten Andean amphibians. Neotropical Biodiversity, 2016, 2, 26-36.	0.5	31
42	The inhibition of extracellular proteinases from Aphanomyces spp. by three different proteinase inhibitors from crayfish blood. Mycological Research, 1998, 102, 820-824.	2.5	30
43	8. Invasive Crayfish and Their Invasive Diseases in Europe with the Focus on the Virulence Evolution of the Crayfish Plague. , 2015, , 183-211.		30
44	First detection of the crayfish plague pathogen Aphanomyces astaci in South America: a high potential risk to native crayfish. Hydrobiologia, 2016, 781, 181-190.	2.0	30
45	Mapping 15 years of crayfish plague in the Iberian Peninsula: The impact of two invasive species on the endangered native crayfish. PLoS ONE, 2019, 14, e0219223.	2.5	30
46	Temporal dynamics of spore release of the crayfish plague pathogen from its natural host, American spiny-cheek crayfish (<i>Orconectes limosus</i>), evaluated by transmission experiments. Parasitology, 2013, 140, 792-801.	1.5	29
47	Molecular identification of a bronopol tolerant strain of Saprolegnia australis causing egg and fry mortality in farmed brown trout, Salmo trutta. Fungal Biology, 2014, 118, 591-600.	2.5	29
48	Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture, 2014, 434, 462-469.	3.5	29
49	Eroded swimmeret syndrome in female crayfish Pacifastacus leniusculus associated with Aphanomyces astaci and Fusarium spp. infections. Diseases of Aquatic Organisms, 2015, 112, 219-228.	1.0	29
50	A Comprehensive Protocol for Improving the Description of Saprolegniales (Oomycota): Two Practical Examples (Saprolegnia aenigmatica sp. nov. and Saprolegnia racemosa sp. nov.). PLoS ONE, 2015, 10, e0132999.	2.5	29
51	A plan of restauration in Navarra for the native freshwater crayfish species of Spain, <i>Austropotamobius pallipes</i> . Knowledge and Management of Aquatic Ecosystems: an International Journal on Aquatic Ecosystems, 1997, , 625-637.	0.4	28
52	Cell entry of a host-targeting protein of oomycetes requires gp96. Nature Communications, 2018, 9, 2347.	12.8	28
53	Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLoS Pathogens, 2019, 15, e1007682.	4.7	28
54	Tracing the origin of the crayfish plague pathogen, Aphanomyces astaci, to the Southeastern United States. Scientific Reports, 2021, 11, 9332.	3.3	28

#	Article	IF	CITATIONS
55	Low genetic variability of the white-clawed crayfish in the Iberian Peninsula: its origin and management implications. Aquatic Conservation: Marine and Freshwater Ecosystems, 2008, 18, 19-31.	2.0	27
56	Differences in susceptibility to Saprolegnia infections among embryonic stages of two anuran species. Oecologia, 2011, 165, 819-826.	2.0	26
57	Image analysis of hyphal morphogenesis in Saprolegniaceae (Oomycetes). Fungal Genetics and Biology, 2004, 41, 293-307.	2.1	24
58	Visualization of Localized Pathogen-Induced pH Modulation in Almond Tissues Infected by Colletotrichum acutatum Using Confocal Scanning Laser Microscopy. Phytopathology, 2008, 98, 1171-1178.	2.2	24
59	Leatherback hatchling sea-finding in response to artificial lighting: Interaction between wavelength and moonlight. Journal of Experimental Marine Biology and Ecology, 2015, 463, 143-149.	1.5	24
60	How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs. Journal of Experimental Zoology, 2012, 317A, 47-54.	1.2	23
61	The diversity of oomycetes on crayfish: Morphological vs. molecular identification of cultures obtained while isolating the crayfish plague pathogen. Fungal Biology, 2013, 117, 682-691.	2.5	23
62	Resistance to the crayfish plague pathogen, Aphanomyces astaci, in two freshwater shrimps. Journal of Invertebrate Pathology, 2014, 121, 97-104.	3.2	23
63	Structural damage caused by the invasive crayfish Procambarus clarkii (Girard, 1852) in rice fields of the Iberian Peninsula: a study case. Fundamental and Applied Limnology, 2015, 186, 259-269.	0.7	23
64	Isolation of fungal pathogens from eggs of the endangered sea turtle species <i>Chelonia mydas</i> in Ascension Island. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 661-667.	0.8	23
65	Hidden sites in the distribution of the crayfish plague pathogen Aphanomyces astaci in Eastern Europe: Relicts of genetic groups from older outbreaks?. Journal of Invertebrate Pathology, 2018, 157, 117-124.	3.2	22
66	Aphanomyces astaci isolate from latently infected stone crayfish (Austropotamobius torrentium) population is virulent. Journal of Invertebrate Pathology, 2017, 149, 15-20.	3.2	21
67	Effect of Wetness Duration and Temperature on the Development of Anthracnose on Selected Almond Tissues and Comparison of Cultivar Susceptibility. Phytopathology, 2011, 101, 1013-1020.	2.2	20
68	Mitochondrial genomes and comparative genomics of Aphanomyces astaci and Aphanomyces invadans. Scientific Reports, 2016, 6, 36089.	3.3	18
69	Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. Journal of Invertebrate Pathology, 2020, 169, 107274.	3.2	18
70	Variation in Resistance to the Invasive Crayfish Plague and Immune Defence in the Native Noble Crayfish. Annales Zoologici Fennici, 2014, 51, 371-389.	0.6	15
71	Genetic variation in the ribosomal internal transcribed spacers of Aphanomyces astaci Schikora from Finland. Aquaculture, 2011, 311, 48-53.	3.5	14
72	Chaos and Adaptation in the Pathogen-Host Relationship in Relation to the Conservation: The Case of the Crayfish Plague and the Noble Crayfish. , 2015, , 246-274.		14

#	Article	IF	CITATIONS
73	Observations of crayfish plague infections in commercially important narrow-clawed crayfish populations in Turkey. Knowledge and Management of Aquatic Ecosystems, 2018, , 10.	1.1	14
74	Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE, 2018, 13, e0190361.	2.5	14
75	Numerous population crashes of wild signal crayfish (Pacifastacus leniusculus) in southern Finland. Freshwater Crayfish, 2014, 20, 73-79.	0.5	14
76	The signal crayfish (Pacifastacus leniusculus) in Lake Tahoe (USA) hosts multiple Aphanomyces species. Journal of Invertebrate Pathology, 2019, 166, 107218.	3.2	13
77	Early breeding protects anuran eggs from <i>Saprolegnia</i> infection. Austral Ecology, 2013, 38, 672-679.	1.5	12
78	Potential effects of dune scarps caused by beach erosion on the nesting behavior of leatherback turtles. Marine Ecology - Progress Series, 2016, 551, 239-248.	1.9	12
79	Invasive rusty crayfish (<i>Faxonius rusticus</i>) populations in North America are infected with the crayfish plague disease agent (<i>Aphanomyces astaci</i>). Freshwater Science, 2019, 38, 425-433.	1.8	11
80	Infraorder Astacidea Latreille, 1802 p.p.: the freshwater crayfish. , 2010, , 269-423.		11
81	Current techniques, approaches and knowledge in diagnosis of crayfish plague and other crayfish diseases. Knowledge and Management of Aquatic Ecosystems, 2009, , 02.	1.1	10
82	Aphanomyces astaci mtDNA: insights into the pathogen's differentiation and its genetic diversity from other closely related oomycetes. Fungal Biology, 2021, 125, 316-325.	2.5	10
83	Controlled Infection Experiment With Aphanomyces astaci Provides Additional Evidence for Latent Infections and Resistance in Freshwater Crayfish. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
84	Investigation of ornamental crayfish reveals new carrier species of the crayfish plague pathogen (Aphanomyces astaci). Aquatic Invasions, 2017, 12, 77-83.	1.6	10
85	LACK OF SPECIFICITY OF THE MOLECULAR DIAGNOSTIC METHOD FOR IDENTIFICATION OF APHANOMYCES ASTACI. Knowledge and Management of Aquatic Ecosystems: an International Journal on Aquatic Ecosystems, 2007, , 17-24.	0.4	9
86	Narrow-clawed crayfish in Finland: <i>Aphanomyces astaci</i> resistance and genetic relationship to other selected European and Asian populations. Knowledge and Management of Aquatic Ecosystems, 2020, , 30.	1.1	9
87	Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle. Journal of Fungi (Basel, Switzerland), 2021, 7, 742.	3.5	9
88	First Detection of the Crayfish Plague Pathogen Aphanomyces astaci in Costa Rica: European Mistakes Should Not Be Repeated. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
89	Scanning Electron Microscopy (SEM) Protocols for Problematic Plant, Oomycete, and Fungal Samples. Journal of Visualized Experiments, 2017, , .	0.3	7
90	Growth, Survival and Spore Formation of the Pathogenic Aquatic Oomycete Aphanomyces astaci and Fungus Fusarium avenaceum Are Inhibited by Zanthoxylum rhoifolium Bark Extracts In Vitro. Fishes, 2018, 3, 12.	1.7	7

#	Article	IF	CITATIONS
91	Coexistence of Two Invasive Species, Procambarus clarkii and Aphanomyces astaci, in Brackish Waters of a Mediterranean Coastal Lagoon. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	7
92	Evaluation of Potential Transfer of the Pathogen Saprolegnia parasitica between Farmed Salmonids and Wild Fish. Pathogens, 2021, 10, 926.	2.8	7
93	<i>Thelohania contejeani</i> in the province of Alava, Spain. Knowledge and Management of Aquatic Ecosystems: an International Journal on Aquatic Ecosystems, 1997, , 749-752.	0.4	6
94	The invasive alien red-eared slider turtle, Trachemys scripta, as a carrier of STEF-disease pathogens. Fungal Biology, 2022, 126, 113-121.	2.5	5
95	Resistance to Crayfish Plague: Assessing the Response of Native Iberian Populations of the White-Clawed Freshwater Crayfish. Journal of Fungi (Basel, Switzerland), 2022, 8, 342.	3.5	5
96	Saprolegnia milanezii sp. nov., a new species of Saprolegniales (Oomycota, Straminipila) from Brazil. Phytotaxa, 2016, 270, 286.	0.3	4
97	Effects of egg mass and local climate on morphology of East Pacific leatherback turtle Dermochelys coriacea hatchlings in Costa Rica. Marine Ecology - Progress Series, 2021, 669, 191-200.	1.9	3
98	Editorial: Conservation of European Freshwater Crayfish. Frontiers in Ecology and Evolution, 2021, 9,	2.2	3
99	Fungal signatures of oral disease reflect environmental degradation in a facultative avian scavenger. Science of the Total Environment, 2022, 837, 155397.	8.0	3
100	Aphanomyces frigidophilus, fungus-like organisms isolated from water of springs in BiaÅ,ystok, Poland. African Journal of Biotechnology, 2013, 12, 6310-6314.	0.6	2
101	Unraveling the Hidden Diversity of the Native White Claw Crayfish in the Iberian Peninsula. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
102	Water molds Saprolegnia diclina (FLO) isolated from eggs of Carassius carassius L. in BiaÅ,ystok Rivers, Poland. African Journal of Microbiology Research, 2013, 7, 5406-5410.	0.4	1
103	Reprint of: The diversity of oomycetes on crayfish: Morphological vs. molecular identification of cultures obtained while isolating the crayfish plague pathogen. Fungal Biology, 2014, 118, 601-611.	2.5	1
104	A new kid in town: First case of an alien worm, Xironogiton victoriensis (Annelida: Clitellata) on a native European freshwater crayfish. Aquaculture, 2018, 496, 39-42.	3.5	1
105	Eroded Swimmeret Syndrome: Update of the Current Knowledge. Freshwater Crayfish, 2021, 26, 63-68.	0.5	1
106	Title is missing!. Anales Del Jardin Botanico De Madrid, 2005, 62, .	0.4	0