Remco A Koster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4544093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and Validation of Dried Blood Spot–Based Methods for Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2019, 41, 409-430.	2.0	188
2	Robust, High-Throughput LC-MS/MS Method for Therapeutic Drug Monitoring of Cyclosporine, Tacrolimus, Everolimus, and Sirolimus in Whole Blood. Therapeutic Drug Monitoring, 2009, 31, 116-125.	2.0	128
3	Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta, 2013, 115, 47-54.	5.5	110
4	What is the right blood hematocrit preparation procedure for standards and quality control samples for dried blood spot analysis?. Bioanalysis, 2015, 7, 345-351.	1.5	59
5	Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, and Creatinine in Dried Blood Spots in Kidney Transplant Patients. Transplantation, 2017, 101, 1727-1733.	1.0	49
6	Fast and Highly Selective LC-MS/MS Screening for THC and 16 Other Abused Drugs and Metabolites in Human Hair to Monitor Patients for Drug Abuse. Therapeutic Drug Monitoring, 2014, 36, 234-243.	2.0	46
7	Dried blood spot analysis of creatinine with LC-MS/MS in addition to immunosuppressants analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 1585-1594.	3.7	46
8	A volumetric absorptive microsampling LC–MS/MS method for five immunosuppressants and their hematocrit effects. Bioanalysis, 2019, 11, 495-508.	1.5	43
9	Dried blood spot validation of five immunosuppressants, without hematocrit correction, on two LC–MS/MS systems. Bioanalysis, 2017, 9, 553-563.	1.5	42
10	Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1687-1695.	2.3	41
11	LC-MS/MS for Therapeutic Drug Monitoring of anti-infective drugs. TrAC - Trends in Analytical Chemistry, 2016, 84, 34-40.	11.4	40
12	The performance of five different dried blood spot cards for the analysis of six immunosuppressants. Bioanalysis, 2015, 7, 1225-1235.	1.5	36
13	Quantification of amikacin and kanamycin in serum using a simple and validated LC–MS/MS method. Bioanalysis, 2014, 6, 2125-2133.	1.5	35
14	Application of Sweat Patch Screening for 16 Drugs and Metabolites Using a Fast and Highly Selective LC-MS/MS Method. Therapeutic Drug Monitoring, 2014, 36, 35-45.	2.0	32
15	Dried Blood Spot Analysis for Therapeutic Drug Monitoring of Clozapine. Journal of Clinical Psychiatry, 2017, 78, e1211-e1218.	2.2	25
16	Clinical application of a dried blood spot assay for sirolimus and everolimus in transplant patients. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1854-1862.	2.3	24
17	Role of therapeutic drug monitoring in pulmonary infections: use and potential for expanded use of dried blood spot samples. Bioanalysis, 2015, 7, 481-495.	1.5	21
18	Substance use in individuals with mild to borderline intellectual disability: A comparison between self-report, collateral-report and biomarker analysis. Research in Developmental Disabilities, 2017, 63, 151-159.	2.2	20

REMCO A KOSTER

#	Article	IF	CITATIONS
19	Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. Clinical Mass Spectrometry, 2019, 14, 34-45.	1.9	17
20	Therapeutic Drug Monitoring by Dried Blood Spot: Progress to Date and Future Directions. Clinical Pharmacokinetics, 2014, 53, 1053-1053.	3.5	16
21	Analysis of Remifentanil with Liquid Chromatography-Tandem Mass Spectrometry and an Extensive Stability Investigation in EDTA Whole Blood and Acidified EDTA Plasma. Anesthesia and Analgesia, 2015, 120, 1235-1241.	2.2	14
22	Performance of a web-based application measuring spot quality in dried blood spot sampling. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1846-1853.	2.3	14
23	The influence of the dried blood spot drying time on the recoveries of six immunosuppressants. Journal of Applied Bioanalysis, 2015, 1, 116-122.	0.2	14
24	The relation of the number of hydrogen-bond acceptors with recoveries of immunosuppressants in DBS analysis. Bioanalysis, 2015, 7, 1717-1722.	1.5	13
25	Quality Assessment of Dried Blood Spots from Patients With Tuberculosis from 4 Countries. Therapeutic Drug Monitoring, 2019, 41, 714-718.	2.0	13
26	Simple and robust LC–MS/MS analysis method for therapeutic drug monitoring of micafungin. Bioanalysis, 2018, 10, 877-886.	1.5	9
27	Determination of levofloxacin in human serum using liquid chromatography tandem mass spectrometry. Journal of Applied Bioanalysis, 2018, 4, 16-25.	0.2	9
28	Very complex internal standard response variation in LC–MS/MS bioanalysis: root cause analysis and impact assessment. Bioanalysis, 2019, 11, 1693-1700.	1.5	8
29	Dried blood spot analysis; facing new challenges. Journal of Applied Bioanalysis, 2015, 1, 38-41.	0.2	7
30	Method for Therapeutic Drug Monitoring of Voriconazole and its Primary Metabolite Voriconazole-N-oxide in Human Serum using LC-MS/MS. Journal of Applied Bioanalysis, 2018, 4, 114-123.	0.2	5
31	UHPLC–MS/MS method for iohexol determination in human EDTA and lithium-heparin plasma, human urine and in goat-Âand pig EDTA plasma. Bioanalysis, 2020, 12, 981-990.	1.5	3
32	Have we got â€~patient-centric sampling' right?. Bioanalysis, 2020, 12, 869-872.	1.5	1
33	Reply to Verhaeghe et al: Table 1 Clinical Infectious Diseases, 2016, 63, 146-147.	5.8	0
34	The impact of decreased LC–MS/MS runÂtimes on small molecule bioanalysis. Bioanalysis, 2021, 13, 409-413.	1.5	0