List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543674/publications.pdf Version: 2024-02-01

		22153	22832
200	14,458	59	112
papers	citations	h-index	g-index
215	215	215	19556
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature, 2008, 452, 633-637.	27.8	1,169
2	Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature, 2018, 563, 579-583.	27.8	624
3	Lung cancer susceptibility locus at 5p15.33. Nature Genetics, 2008, 40, 1404-1406.	21.4	514
4	Improved Identification of von Hippel-Lindau Gene Alterations in Clear Cell Renal Tumors. Clinical Cancer Research, 2008, 14, 4726-4734.	7.0	503
5	A Genome-wide Association Study of Lung Cancer Identifies a Region of Chromosome 5p15 Associated with Risk for Adenocarcinoma. American Journal of Human Genetics, 2009, 85, 679-691.	6.2	489
6	Genetic Polymorphisms in the Base Excision Repair Pathway and Cancer Risk: A HuGE Review. American Journal of Epidemiology, 2005, 162, 925-942.	3.4	482
7	Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nature Genetics, 2017, 49, 1126-1132.	21.4	472
8	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
9	Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nature Genetics, 2014, 46, 736-741.	21.4	360
10	The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 126-135.	2.5	278
11	Previous Lung Diseases and Lung Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE, 2011, 6, e17479.	2.5	265
12	<i>TP53</i> and <i>KRAS</i> Mutation Load and Types in Lung Cancers in Relation to Tobacco Smoke: Distinct Patterns in Never, Former, and Current Smokers. Cancer Research, 2005, 65, 5076-5083.	0.9	237
13	Quantitative Analysis of DNA Methylation Profiles in Lung Cancer Identifies Aberrant DNA Methylation of Specific Genes and Its Association with Gender and Cancer Risk Factors. Cancer Research, 2009, 69, 243-252.	0.9	231
14	Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 2015, 47, 911-916.	21.4	224
15	Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Human Molecular Genetics, 2012, 21, 4980-4995.	2.9	196
16	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
17	CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis, 2003, 24, 875-882.	2.8	184
18	GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a highâ€risk population. International Journal of Cancer, 2004, 110, 598-604.	5.1	179

#	Article	IF	CITATIONS
19	Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium. Journal of the National Cancer Institute, 2010, 102, 959-971.	6.3	174
20	Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations. Lancet Respiratory Medicine,the, 2019, 7, 881-891.	10.7	167
21	Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis, 2004, 25, 973-978.	2.8	166
22	Large-Scale Investigation of Base Excision Repair Genetic Polymorphisms and Lung Cancer Risk in a Multicenter Study. Journal of the National Cancer Institute, 2005, 97, 567-576.	6.3	166
23	Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nature Genetics, 2016, 48, 1544-1550.	21.4	164
24	Multiple ADH genes are associated with upper aerodigestive cancers. Nature Genetics, 2008, 40, 707-709.	21.4	161
25	Previous Lung Diseases and Lung Cancer Risk: A Pooled Analysis From the International Lung Cancer Consortium. American Journal of Epidemiology, 2012, 176, 573-585.	3.4	160
26	A Genome-Wide Association Study of Upper Aerodigestive Tract Cancers Conducted within the INHANCE Consortium. PLoS Genetics, 2011, 7, e1001333.	3.5	158
27	Evidence for an Important Role of Alcohol- and Aldehyde-Metabolizing Genes in Cancers of the Upper Aerodigestive Tract. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 696-703.	2.5	148
28	Increased risk of lung cancer in individuals with a family history of the disease: A pooled analysis from the International Lung Cancer Consortium. European Journal of Cancer, 2012, 48, 1957-1968.	2.8	143
29	Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet, The, 2005, 366, 1558-1560.	13.7	136
30	The epidemiology of neuroblastoma: a review. Paediatric and Perinatal Epidemiology, 2009, 23, 125-143.	1.7	131
31	Cannabis smoking and lung cancer risk: Pooled analysis in the <scp>I</scp> nternational <scp>L</scp> ung <scp>C</scp> ancer <scp>C</scp> onsortium. International Journal of Cancer, 2015, 136, 894-903.	5.1	131
32	Genetic Variants on 15q25.1, Smoking, and Lung Cancer: An Assessment of Mediation and Interaction. American Journal of Epidemiology, 2012, 175, 1013-1020.	3.4	128
33	Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Human Molecular Genetics, 2015, 24, 5356-5366.	2.9	128
34	Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. International Journal of Epidemiology, 2010, 39, 563-577.	1.9	125
35	Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer. International Journal of Epidemiology, 2016, 45, 896-908.	1.9	124
36	A Review of the Application of Inflammatory Biomarkers in Epidemiologic Cancer Research. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1729-1751.	2.5	123

#	Article	IF	CITATIONS
37	In-Home Coal and Wood Use and Lung Cancer Risk: A Pooled Analysis of the International Lung Cancer Consortium. Environmental Health Perspectives, 2010, 118, 1743-1747.	6.0	112
38	Patterns of EGFR, HER2, TP53, and KRAS Mutations of p14arf Expression in Non–Small Cell Lung Cancers in Relation to Smoking History. Cancer Research, 2007, 67, 5667-5672.	0.9	111
39	Meta- and Pooled Analyses of the Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Gastric Cancer Risk: A Huge-GSEC Review. American Journal of Epidemiology, 2007, 167, 505-516.	3.4	103
40	Exposure to secondhand tobacco smoke and lung cancer by histological type: A pooled analysis of the International Lung Cancer Consortium (ILCCO). International Journal of Cancer, 2014, 135, 1918-1930.	5.1	100
41	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.9	100
42	Occupational Trichloroethylene Exposure and Renal Carcinoma Risk: Evidence of Genetic Susceptibility by Reductive Metabolism Gene Variants. Cancer Research, 2010, 70, 6527-6536.	0.9	97
43	Obesity and cancer: Mendelian randomization approach utilizing the FTO genotype. International Journal of Epidemiology, 2009, 38, 971-975.	1.9	96
44	International Lung Cancer Consortium: Pooled Analysis of Sequence Variants in DNA Repair and Cell Cycle Pathways. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3081-3089.	2.5	93
45	DNA Repair and Cell Cycle Control Genes and the Risk of Young-Onset Lung Cancer. Cancer Research, 2006, 66, 11062-11069.	0.9	91
46	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
47	Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis, 2007, 28, 1287-1293.	2.8	87
48	Wilms' tumour: a systematic review of risk factors and meta-analysis. Paediatric and Perinatal Epidemiology, 2010, 24, 449-469.	1.7	86
49	Family history and lung cancer risk: international multicentre case–control study in Eastern and Central Europe and meta-analyses. Cancer Causes and Control, 2010, 21, 1091-1104.	1.8	81
50	Body Mass Index (BMI), BMI Change, and Overall Survival in Patients With SCLC and NSCLC: A Pooled Analysis of the International Lung Cancer Consortium. Journal of Thoracic Oncology, 2019, 14, 1594-1607.	1.1	81
51	Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Molecular Psychiatry, 2018, 23, 1911-1919.	7.9	80
52	Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study. PLoS ONE, 2017, 12, e0177875.	2.5	79
53	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11, 3353.	12.8	75
54	Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. International Journal of Cancer, 2021, 148, 1077-1086.	5.1	73

#	Article	IF	CITATIONS
55	Pooled Analysis and Meta-analysis of the Glutathione S-Transferase P1 Ile 105Val Polymorphism and Bladder Cancer: A HuGE-GSEC Review. American Journal of Epidemiology, 2007, 165, 1221-1230.	3.4	72
56	CHRNA5 Risk Variant Predicts Delayed Smoking Cessation and Earlier Lung Cancer Diagnosis—A Meta-Analysis. Journal of the National Cancer Institute, 2015, 107, .	6.3	72
57	Asthma and lung cancer risk: a systematic investigation by the International Lung Cancer Consortium. Carcinogenesis, 2012, 33, 587-597.	2.8	69
58	Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors. BMC Cancer, 2010, 10, 285.	2.6	67
59	Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case–control study. Human Molecular Genetics, 2007, 16, 1794-1801.	2.9	66
60	A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 193-200.	2.5	66
61	Cross Cancer Genomic Investigation of Inflammation Pathway for Five Common Cancers: Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Journal of the National Cancer Institute, 2015, 107, djv246.	6.3	63
62	Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nature Communications, 2018, 9, 3221.	12.8	60
63	Is high vitamin B12 status a cause of lung cancer?. International Journal of Cancer, 2019, 145, 1499-1503.	5.1	58
64	Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Letters, 2009, 273, 55-61.	7.2	57
65	Novel Association of Genetic Markers Affecting CYP2A6 Activity and Lung Cancer Risk. Cancer Research, 2016, 76, 5768-5776.	0.9	57
66	International Lung Cancer Consortium: Coordinated association study of 10 potential lung cancer susceptibility variants. Carcinogenesis, 2010, 31, 625-633.	2.8	56
67	Tobacco Smoking and Risk of Second Primary Lung Cancer. Journal of Thoracic Oncology, 2021, 16, 968-979.	1.1	54
68	Appraising the causal relevance of DNA methylation for risk of lung cancer. International Journal of Epidemiology, 2019, 48, 1493-1504.	1.9	53
69	A multivariable Mendelian randomization analysis investigating smoking and alcohol consumption in oral and oropharyngeal cancer. Nature Communications, 2020, 11, 6071.	12.8	51
70	Assessing Lung Cancer Absolute Risk Trajectory Based on a Polygenic Risk Model. Cancer Research, 2021, 81, 1607-1615.	0.9	50
71	Folate-related genes and the risk of tobacco-related cancers in Central Europe. Carcinogenesis, 2007, 28, 1334-1340.	2.8	49
72	Associated Links Among Smoking, Chronic Obstructive Pulmonary Disease, and Small Cell Lung Cancer: A Pooled Analysis in the International Lung Cancer Consortium. EBioMedicine, 2015, 2, 1677-1685.	6.1	49

#	Article	IF	CITATIONS
73	A Novel Genetic Variant in Long Non-coding RNA Gene NEXN-AS1 is Associated with Risk of Lung Cancer. Scientific Reports, 2016, 6, 34234.	3.3	48
74	Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1427-1435.	2.5	48
75	Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1238-1245.	2.5	48
76	Aspirin and NSAID use and lung cancer risk: a pooled analysis in the International Lung Cancer Consortium (ILCCO). Cancer Causes and Control, 2011, 22, 1709-1720.	1.8	47
77	The association of sequence variants in DNA repair and cell cycle genes with cancers of the upper aerodigestive tract. Carcinogenesis, 2006, 28, 665-671.	2.8	45
78	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43
79	Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nature Communications, 2018, 9, 3927.	12.8	43
80	Tobacco smoking and chewing, alcohol drinking and lung cancer risk among men in southern India. International Journal of Cancer, 2003, 107, 441-447.	5.1	42
81	Genome-wide association study of familial lung cancer. Carcinogenesis, 2018, 39, 1135-1140.	2.8	42
82	Lung cancer and DNA repair genes: multilevel association analysis from the International Lung Cancer Consortium. Carcinogenesis, 2012, 33, 1059-1064.	2.8	41
83	Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Medicine, 2022, 20, 3.	5.5	41
84	Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes — A Meta-Analysis. EBioMedicine, 2016, 11, 219-226.	6.1	40
85	Inherited Predisposition of Lung Cancer: A Hierarchical Modeling Approach to DNA Repair and Cell Cycle Control Pathways. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2736-2744.	2.5	39
86	Comparison of Pathway Analysis Approaches Using Lung Cancer GWAS Data Sets. PLoS ONE, 2012, 7, e31816.	2.5	38
87	Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci. Carcinogenesis, 2016, 37, 96-105.	2.8	36
88	Pharmacogenetic and Germline Prognostic Markers of Lung Cancer. Journal of Thoracic Oncology, 2011, 6, 296-304.	1.1	35
89	Pleiotropic Associations of Risk Variants Identified for Other Cancers With Lung Cancer Risk: The PAGE and TRICL Consortia. Journal of the National Cancer Institute, 2014, 106, dju061.	6.3	35
90	Alcohol and lung cancer risk among never smokers: A pooled analysis from the international lung cancer consortium and the SYNERGY study. International Journal of Cancer, 2017, 140, 1976-1984.	5.1	35

#	Article	IF	CITATIONS
91	Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma. EBioMedicine, 2018, 32, 93-101.	6.1	35
92	Folate metabolism genes, vegetable intake and renal cancer risk in central Europe. International Journal of Cancer, 2008, 122, 1710-1715.	5.1	33
93	Transcriptomeâ€wide association study reveals candidate causal genes for lung cancer. International Journal of Cancer, 2020, 146, 1862-1878.	5.1	33
94	An Analysis of Growth, Differentiation and Apoptosis Genes with Risk of Renal Cancer. PLoS ONE, 2009, 4, e4895.	2.5	32
95	Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. International Journal of Epidemiology, 2019, 48, 751-766.	1.9	32
96	Protein-altering germline mutations implicate novel genes related to lung cancer development. Nature Communications, 2020, 11, 2220.	12.8	31
97	Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls. Human Genetics, 2013, 132, 579-589.	3.8	29
98	Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population. Carcinogenesis, 2018, 39, 336-346.	2.8	29
99	Menstrual and reproductive factors and lung cancer risk: A pooled analysis from the international lung cancer consortium. International Journal of Cancer, 2017, 141, 309-323.	5.1	28
100	Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. International Journal of Cancer, 2017, 141, 1794-1802.	5.1	28
101	The causal relevance of body mass index in different histological types of lung cancer: A Mendelian randomization study. Scientific Reports, 2016, 6, 31121.	3.3	27
102	Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners. International Archives of Occupational and Environmental Health, 2018, 91, 937-950.	2.3	27
103	Lung Cancer Risk in Never-Smokers of European Descent is Associated With Genetic Variation in the 5p15.33 TERT-CLPTM1Ll Region. Journal of Thoracic Oncology, 2019, 14, 1360-1369.	1.1	27
104	Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes and Control, 2007, 18, 449-455.	1.8	25
105	Vitamin and mineral supplements and thyroid cancer. European Journal of Cancer Prevention, 2013, 22, 158-168.	1.3	25
106	Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget, 2019, 10, 1760-1774.	1.8	25
107	Sequence Variants in Cell Cycle Control Pathway, X-ray Exposure, and Lung Cancer Risk: A Multicenter Case-Control Study in Central Europe. Cancer Research, 2006, 66, 8280-8286.	0.9	23
108	Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nature Communications, 2020, 11, 27.	12.8	23

#	Article	IF	CITATIONS
109	A Novel Pathway-Based Approach Improves Lung Cancer Risk Prediction Using Germline Genetic Variations. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1208-1215.	2.5	22
110	Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer. Journal of Thoracic Oncology, 2018, 13, 1483-1495.	1.1	22
111	Determinants of impaired lung function and lung cancer prediction among never-smokers in the UK Biobank cohort. EBioMedicine, 2019, 47, 58-64.	6.1	22
112	Alcohol consumption and lung cancer risk: A pooled analysis from the International Lung Cancer Consortium and the SYNERGY study. Cancer Epidemiology, 2019, 58, 25-32.	1.9	22
113	The relationship between body-mass index and overall survival in non-small cell lung cancer by sex, smoking status, and race: A pooled analysis of 20,937 International lung Cancer consortium (ILCCO) patients. Lung Cancer, 2021, 152, 58-65.	2.0	22
114	Elevated Platelet Count Appears to Be Causally Associated with Increased Risk of Lung Cancer: A Mendelian Randomization Analysis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 935-942.	2.5	21
115	Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma. Frontiers of Medicine, 2021, 15, 275-291.	3.4	21
116	The Ontario Birth Study: A prospective pregnancy cohort study integrating perinatal research into clinical care. Paediatric and Perinatal Epidemiology, 2018, 32, 290-301.	1.7	20
117	Association between maternal cannabis use and birth outcomes: an observational study. BMC Pregnancy and Childbirth, 2020, 20, 771.	2.4	19
118	Rare deleterious germline variants and risk of lung cancer. Npj Precision Oncology, 2021, 5, 12.	5.4	19
119	Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers. PLoS Genetics, 2021, 17, e1009254.	3.5	19
120	Association of the 15q25 and 5p15 Lung Cancer Susceptibility Regions with Gene Expression in Lung Tumor Tissue. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1097-1104.	2.5	18
121	A Two-Dimensional Pooling Strategy for Rare Variant Detection on Next-Generation Sequencing Platforms. PLoS ONE, 2014, 9, e93455.	2.5	18
122	A Large-Scale Genome-Wide Gene-Gene Interaction Study of Lung Cancer Susceptibility in Europeans With a Trans-Ethnic Validation in Asians. Journal of Thoracic Oncology, 2022, 17, 974-990.	1.1	18
123	Identification of shared and unique susceptibility pathways among cancers of the lung, breast, and prostate from genome-wide association studies and tissue-specific protein interactions. Human Molecular Genetics, 2015, 24, 7406-7420.	2.9	17
124	Systematic Review of Genetic Variation in Chromosome 5p15.33 and Telomere Length as Predictive and Prognostic Biomarkers for Lung Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1537-1549.	2.5	17
125	Tobacco smoking as a risk factor of bronchioloalveolar carcinoma of the lung: pooled analysis of seven case–control studies in the International Lung Cancer Consortium (ILCCO). Cancer Causes and Control, 2011, 22, 73-79.	1.8	16
126	Functional variants in DCAF4 associated with lung cancer risk in European populations. Carcinogenesis, 2017, 38, 541-551.	2.8	16

#	Article	IF	CITATIONS
127	Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia. Carcinogenesis, 2015, 36, 1314-1326.	2.8	15
128	<i>BRM</i> polymorphisms, pancreatic cancer risk and survival. International Journal of Cancer, 2016, 139, 2474-2481.	5.1	15
129	Genetic variant in DNA repair gene <i>GTF2H4</i> is associated with lung cancer risk: a large-scale analysis of six published GWAS datasets in the TRICL consortium. Carcinogenesis, 2016, 37, 888-896.	2.8	15
130	Gene-set meta-analysis of lung cancer identifies pathway related to systemic lupus erythematosus. PLoS ONE, 2017, 12, e0173339.	2.5	15
131	Using genetic variants to evaluate the causal effect of cholesterol lowering on head and neck cancer risk: A Mendelian randomization study. PLoS Genetics, 2021, 17, e1009525.	3.5	15
132	Body Size at Different Ages and Risk of 6 Cancers: A Mendelian Randomization and Prospective Cohort Study. Journal of the National Cancer Institute, 2022, 114, 1296-1300.	6.3	15
133	Natural and Orthogonal Interaction Framework for Modeling Gene-Environment Interactions with Application to Lung Cancer. Human Heredity, 2012, 73, 185-194.	0.8	14
134	The Association of Recently Diagnosed Diabetes and Long-term Diabetes With Survival in Pancreatic Cancer Patients. Pancreas, 2018, 47, 314-320.	1.1	14
135	Pathwayâ€analysis of published genomeâ€wide association studies of lung cancer: A potential role for the <i>CYP4F3</i> locus. Molecular Carcinogenesis, 2017, 56, 1663-1672.	2.7	13
136	Physical Activity Does Not Lower the Risk of Lung Cancer. Cancer Research, 2020, 80, 3765-3769.	0.9	13
137	The Shared Genetic Architectures Between Lung Cancer and Multiple Polygenic Phenotypes in Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1156-1164.	2.5	13
138	Informed Genomeâ€Wide Association Analysis With Family History As a Secondary Phenotype Identifies Novel Loci of Lung Cancer. Genetic Epidemiology, 2015, 39, 197-206.	1.3	11
139	Pleiotropy of genetic variants on obesity and smoking phenotypes: Results from the Oncoarray Project of The International Lung Cancer Consortium. PLoS ONE, 2017, 12, e0185660.	2.5	11
140	Investigation of Leukocyte Telomere Length and Genetic Variants in Chromosome 5p15.33 as Prognostic Markers in Lung Cancer. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1228-1237.	2.5	11
141	Cannabis Use, Pulmonary Function, and Lung Cancer Susceptibility: A Mendelian Randomization Study. Journal of Thoracic Oncology, 2021, 16, 1127-1135.	1.1	11
142	Clonal Hematopoiesis Mutations in Patients with Lung Cancer Are Associated with Lung Cancer Risk Factors. Cancer Research, 2022, 82, 199-209.	0.9	11
143	Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy, 2022, 18, 2519-2536.	9.1	11
144	Secondhand Tobacco Smoke Exposure and Lung Adenocarcinoma <i>In Situ</i> /Minimally Invasive Adenocarcinoma (AIS/MIA). Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1902-1906.	2.5	10

#	Article	IF	CITATIONS
145	Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 816-825.	2.5	10
146	Genetic variants of PTPN2 are associated with lung cancer risk: a re-analysis of eight GWASs in the TRICL-ILCCO consortium. Scientific Reports, 2017, 7, 825.	3.3	10
147	Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs. Scientific Reports, 2017, 7, 44634.	3.3	10
148	Second malignant neoplasms after childhood non-central nervous system embryonal tumours in North America: AÂpopulation-based study. European Journal of Cancer, 2017, 84, 173-183.	2.8	10
149	Susceptibility loci of <i>CNOT6</i> in the general mRNA degradation pathway and lung cancer risk—A reâ€analysis of eight GWASs. Molecular Carcinogenesis, 2017, 56, 1227-1238.	2.7	10
150	Two <i>BRM</i> promoter polymorphisms predict poor survival in patients with hepatocellular carcinoma. Molecular Carcinogenesis, 2018, 57, 106-113.	2.7	10
151	Genetic Determinants of Lung Cancer Prognosis in Never Smokers: A Pooled Analysis in the International Lung Cancer Consortium. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1983-1992.	2.5	10
152	Development and Validation of a Risk Prediction Model for Second Primary Lung Cancer. Journal of the National Cancer Institute, 2022, 114, 87-96.	6.3	10
153	The shared genetic architecture between epidemiological and behavioral traits with lung cancer. Scientific Reports, 2021, 11, 17559.	3.3	10
154	Germline determinants of humoral immune response to HPV-16 protect against oropharyngeal cancer. Nature Communications, 2021, 12, 5945.	12.8	10
155	The Association of Family History of Cancer and Medical History With Pancreatic Cancer Risk. Pancreas, 2014, 43, 812-814.	1.1	9
156	Association between maternal acetaminophen use and adverse birth outcomes in a pregnancy and birth cohort. Pediatric Research, 2020, 87, 1263-1269.	2.3	9
157	Management of screen-detected lung nodules: A Canadian partnership against cancer guidance document. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2020, 4, 236-265.	0.5	9
158	Hormonal factors in association with lung cancer among Asian women: A pooled analysis from the International Lung Cancer Consortium. International Journal of Cancer, 2021, 148, 2241-2254.	5.1	9
159	A multi-omics study links TNS3 and SEPT7 to long-term former smoking NSCLC survival. Npj Precision Oncology, 2021, 5, 39.	5.4	9
160	Investigating the effect of sexual behaviour on oropharyngeal cancer risk: a methodological assessment of Mendelian randomization. BMC Medicine, 2022, 20, 40.	5.5	9
161	Xenobiotic Metabolizing Gene Variants and Renal Cell Cancer: A Multicenter Study. Frontiers in Oncology, 2012, 2, 16.	2.8	8
162	BRM Promoter Polymorphisms and Survival of Advanced Non–Small Cell Lung Cancer Patients in the Princess Margaret Cohort and CCTG BR.24 Trial. Clinical Cancer Research, 2017, 23, 2460-2470.	7.0	8

#	Article	IF	CITATIONS
163	Multiple imputation and clinicoâ€serological models to predict human papillomavirus status in oropharyngeal carcinoma: An alternative when tissue is unavailable. International Journal of Cancer, 2020, 146, 2166-2174.	5.1	8
164	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.9	8
165	Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden. Journal of the National Cancer Institute, 2022, 114, 1159-1166.	6.3	8
166	Empirical Hierarchical Bayes Approach to Geneâ€Environment Interactions: Development and Application to Genomeâ€Wide Association Studies of Lung Cancer in TRICL. Genetic Epidemiology, 2013, 37, 551-559.	1.3	7
167	Polymorphisms of the centrosomal gene (<i>FGFR1OP</i>) and lung cancer risk: a meta-analysis of 14 463 cases and 44 188 controls. Carcinogenesis, 2016, 37, 280-289.	2.8	7
168	Genomeâ€wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk. International Journal of Cancer, 2020, 146, 2855-2864.	5.1	7
169	Integration of multiomic annotation data to prioritize and characterize inflammation and immuneâ€related risk variants in squamous cell lung cancer. Genetic Epidemiology, 2021, 45, 99-114.	1.3	7
170	Statistical power in COVID-19 case-control host genomic study design. Genome Medicine, 2020, 12, 115.	8.2	7
171	Common <i>TDP1</i> Polymorphisms in Relation to Survival among Small Cell Lung Cancer Patients: A Multicenter Study from the International Lung Cancer Consortium. Clinical Cancer Research, 2017, 23, 7550-7557.	7.0	6
172	Association Analysis of Driver Gene–Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1423-1429.	2.5	6
173	Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals. Human Genetics and Genomics Advances, 2021, 2, 100041.	1.7	6
174	Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci. Carcinogenesis, 2019, 40, 432-440.	2.8	5
175	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	2.5	5
176	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.9	5
177	Early-childhood cytomegalovirus infection and children's neurocognitive development. International Journal of Epidemiology, 2021, 50, 538-549.	1.9	5
178	Association of germline <scp>TYK2</scp> variation with lung cancer and <scp>nonâ€Hodgkin</scp> lymphoma risk. International Journal of Cancer, 2022, 151, 2155-2160.	5.1	5
179	Nicotine dependence as a risk factor for upper aerodigestive tract (UADT) cancers: A mediation analysis. PLoS ONE, 2020, 15, e0237723.	2.5	4
180	Genome-wide interaction analysis identified low-frequency variants with sex disparity in lung cancer risk. Human Molecular Genetics, 2022, 31, 2831-2843.	2.9	4

#	Article	IF	CITATIONS
181	Biomarker-Based Lung Cancer Screening Eligibility: Implementation Considerations. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 698-701.	2.5	4
182	Circulating Isovalerylcarnitine and Lung Cancer Risk: Evidence from Mendelian Randomization and Prediagnostic Blood Measurements. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1966-1974.	2.5	4
183	META-GSA: Combining Findings from Gene-Set Analyses across Several Genome-Wide Association Studies. PLoS ONE, 2015, 10, e0140179.	2.5	3
184	lam hiQ—a novel pair of accuracy indices for imputed genotypes. BMC Bioinformatics, 2022, 23, 50.	2.6	2
185	Considerations of Biomarker Application for Cancer Continuum in the Era of Precision Medicine. Current Epidemiology Reports, 2022, 9, 200-211.	2.4	2
186	Cross-Cancer Analysis Reveals Novel Pleiotropic Associations—Response. Cancer Research, 2017, 77, 6045-6046.	0.9	1
187	Childhood head trauma and the risk of childhood brain tumours: A caseâ€control study in Ontario, Canada. International Journal of Cancer, 2022, 150, 795-801.	5.1	1
188	Accounting for <i>EGFR</i> Mutations in Epidemiologic Analyses of Non–Small Cell Lung Cancers: Examples Based on the International Lung Cancer Consortium Data. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 679-687.	2.5	1
189	Gene–gene interaction of AhRwith and within the Wntcascade affects susceptibility to lung cancer. European Journal of Medical Research, 2022, 27, 14.	2.2	1
190	Deciphering associations between three RNA splicing-related genetic variants and lung cancer risk. Npj Precision Oncology, 2022, 6, .	5.4	1
191	Maternal acetaminophen use and cognitive development at 4 years: the Ontario Birth Study. Pediatric Research, 0, , .	2.3	1
192	Heritable Germline Variation and Lung Cancer Susceptibility: One Size Does not Fit All. Journal of Thoracic Oncology, 2018, 13, 601-602.	1.1	0
193	Incorporating multiple sets of eQTL weights into geneâ€byâ€environment interaction analysis identifies novel susceptibility loci for pancreatic cancer. Genetic Epidemiology, 2020, 44, 880-892.	1.3	0
194	Bayesian copy number detection and association in large-scale studies. BMC Cancer, 2020, 20, 856.	2.6	0
195	Using Precision Medicine with a Neurodevelopmental Perspective to Study Inflammation and Depression. Current Psychiatry Reports, 2020, 22, 87.	4.5	0
196	A reply to "Lung cancer outcomes: Are BMI and race clinically relevant?― Lung Cancer, 2021, 154, 225-226.	2.0	0
197	BRM promoter insertion/deletion polymorphisms in hepatocellular carcinoma risk and survival Journal of Clinical Oncology, 2014, 32, 225-225.	1.6	0
198	Functional BRM promoter polymorphisms, pancreatic adenocarcinoma risk, and survival Journal of Clinical Oncology, 2014, 32, 222-222.	1.6	0

#	Article	IF	CITATIONS
199	Does ethnicity affect the relationship between body mass index (BMI) and overall survival (OS) in non-small cell lung cancer (NSCLC)? A pooled analysis of 17,326 International Lung Cancer Consortium (ILCCO) patients (pts) Journal of Clinical Oncology, 2019, 37, 1562-1562.	1.6	0
200	Maternal prenatal psychological distress and vitamin intake with children's neurocognitive development. Pediatric Research, 2022, , .	2.3	0