
Rachel E Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20602-20607.	3.3	231
2	Osteoarthritis joint pain: The cytokine connection. Cytokine, 2014, 70, 185-193.	1.4	213
3	PCSK6-mediated corin activation is essential for normal blood pressure. Nature Medicine, 2015, 21, 1048-1053.	15.2	117
4	Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthritis and Cartilage, 2015, 23, 1254-1266.	0.6	97
5	CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthritis and Cartilage, 2017, 25, 406-412.	0.6	95
6	Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthritis and Cartilage, 2010, 18, 1608-1619.	0.6	86
7	Damageâ€Associated Molecular Patterns Generated in Osteoarthritis Directly Excite Murine Nociceptive Neurons Through Tollâ€like Receptor 4. Arthritis and Rheumatology, 2015, 67, 2933-2943.	2.9	83
8	Peripheral Mechanisms Contributing to Osteoarthritis Pain. Current Rheumatology Reports, 2018, 20, 9.	2.1	73
9	An aggrecan fragment drives osteoarthritis pain through Toll-like receptor 2. JCI Insight, 2018, 3, .	2.3	72
10	The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis and Cartilage, 2020, 28, 562-571.	0.6	65
11	Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, 299-306.	0.6	62
12	Intraarticular injection of heparinâ€binding insulinâ€like growth factor 1 sustains delivery of insulinâ€like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis and Rheumatism, 2010, 62, 3686-3694.	6.7	58
13	Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models?. Current Opinion in Rheumatology, 2017, 29, 110-118.	2.0	53
14	Mathematical modeling of material-induced blood plasma coagulation. Biomaterials, 2006, 27, 796-806.	5.7	50
15	What is new in pain modification in osteoarthritis?. Rheumatology, 2018, 57, iv99-iv107.	0.9	49
16	Chemogenetic Inhibition of Pain Neurons in a Mouse Model of Osteoarthritis. Arthritis and Rheumatology, 2017, 69, 1429-1439.	2.9	48
17	Osteoarthritis pain: What are we learning from animal models?. Best Practice and Research in Clinical Rheumatology, 2017, 31, 676-687.	1.4	46
18	Procoagulant stimulus processing by the intrinsic pathway of blood plasma coagulation. Biomaterials, 2005, 26, 2965-2973.	5.7	44

RACHEL E MILLER

#	Article	IF	CITATIONS
19	Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity. Cartilage, 2013, 4, 63-74.	1.4	43
20	Visualization of Peripheral Neuron Sensitization in a Surgical Mouse Model of Osteoarthritis by In Vivo Calcium Imaging. Arthritis and Rheumatology, 2018, 70, 88-97.	2.9	41
21	The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis and Cartilage, 2019, 27, 1669-1679.	0.6	41
22	TRPC5 Does Not Cause or Aggravate Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 409-415.	3.0	38
23	The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of Osteoarthritis Pain. Clinics in Geriatric Medicine, 2022, 38, 221-238.	1.0	38
24	An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Seminars in Immunopathology, 2019, 41, 583-594.	2.8	37
25	Plasma coagulation response to surfaces with nanoscale chemical heterogeneity. Biomaterials, 2006, 27, 208-215.	5.7	36
26	Engineering insulinâ€like growth factorâ€1 for local delivery. FASEB Journal, 2008, 22, 1886-1893.	0.2	36
27	Spinal microglial activation in a murine surgical model of knee osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, 718-726.	0.6	35
28	Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets. Current Rheumatology Reports, 2013, 15, 350.	2.1	34
29	Delivering Heparin-Binding Insulin-Like Growth Factor 1 with Self-Assembling Peptide Hydrogels. Tissue Engineering - Part A, 2015, 21, 637-646.	1.6	32
30	The Role of Peripheral Nociceptive Neurons in the Pathophysiology of Osteoarthritis Pain. Current Osteoporosis Reports, 2015, 13, 318-326.	1.5	31
31	Growth Factor Delivery Through Self-assembling Peptide Scaffolds. Clinical Orthopaedics and Related Research, 2011, 469, 2716-2724.	0.7	30
32	Effects of the Combination of Microfracture and Self-Assembling Peptide Filling on the Repair of a Clinically Relevant Trochlear Defect in an Equine Model. Journal of Bone and Joint Surgery - Series A, 2014, 96, 1601-1609.	1.4	28
33	The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice. Arthritis Research and Therapy, 2021, 23, 103.	1.6	27
34	Neuroimmune interactions and osteoarthritis pain: focus on macrophages. Pain Reports, 2021, 6, e892.	1.4	26
35	Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. , 2020, 211, 107553.		25
36	Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. Osteoarthritis and Cartilage, 2020, 28, 581-592.	0.6	23

RACHEL E MILLER

#	Article	IF	CITATIONS
37	Basic Mechanisms of Pain in Osteoarthritis. Rheumatic Disease Clinics of North America, 2021, 47, 165-180.	0.8	23
38	Current status of nerve growth factor antibodies for the treatment of osteoarthritis pain. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 85-87.	0.4	22
39	Pain in the Ehlers–Danlos syndromes: Mechanisms, models, and challenges. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2021, 187, 429-445.	0.7	21
40	Chemokine receptorâ€7 (CCR7) deficiency leads to delayed development of joint damage and functional deficits in a murine model of osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 864-875.	1.2	19
41	Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain, 2022, 163, 560-578.	2.0	19
42	Pain-related behaviors and abnormal cutaneous innervation in a murine model of classical Ehlers–Danlos syndrome. Pain, 2020, 161, 2274-2283.	2.0	13
43	Animal Models of Ehlers–Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Frontiers in Genetics, 2021, 12, 726474.	1.1	11
44	Can we target CCR2 to treat osteoarthritis? The trick is in the timing!. Osteoarthritis and Cartilage, 2017, 25, 799-801.	0.6	10
45	An Update on Targets for Treating Osteoarthritis Pain: NGF and TRPV1. Current Treatment Options in Rheumatology, 2020, 6, 129-145.	0.6	8
46	Is cannabis an effective treatment for joint pain?. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 59-67.	0.4	8
47	Why we should study osteoarthritis pain in experimental models in both sexes. Osteoarthritis and Cartilage, 2020, 28, 397-399.	0.6	5