
Marcin Krajewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of the agarose ferrogel fine structure on magnetic heating efficiency. Journal of Magnetism and Magnetic Materials, 2022, 550, 169000.	2.3	4
2	Comparison of the influence of superparamagnetic nanoparticles concentration and coverage on the alternating magnetic field thermal effect. Journal of Magnetism and Magnetic Materials, 2022, 550, 168918.	2.3	1
3	Impact of titanium precursors on formation and electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 575-582.	2.5	8
4	Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. Journal of Energy Storage, 2021, 34, 102178.	8.1	105
5	Solution combustion synthesis of a nanometer-scale Co ₃ O ₄ anode material for Li-ion batteries. Beilstein Journal of Nanotechnology, 2021, 12, 424-431.	2.8	5
6	Improved Laser Ablation Method for the Production of Luminescent Carbon Particles in Liquids. Materials, 2021, 14, 2365.	2.9	1
7	Impact of Thermal Oxidation on Morphological, Structural and Magnetic Properties of Fe-Ni Wire-Like Nanochains. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3530-3540.	2.2	1
8	Evolution of Structural and Magnetic Properties of Fe-Co Wire-like Nanochains Caused by Annealing Atmosphere. Materials, 2021, 14, 4748.	2.9	1
9	Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature. Journal of Solid State Electrochemistry, 2021, 25, 2665-2674.	2.5	5
10	The glass-like structure of iron–nickel nanochains produced by the magnetic-field-induced reduction reaction with sodium borohydride. Physical Chemistry Chemical Physics, 2021, 24, 326-335.	2.8	1
11	Enhancement of mechanical properties of vertically aligned carbon nanotube arrays due to N ⁺ ion irradiation. Nanotechnology, 2020, 31, 285703.	2.6	3
12	Magnetic-field-induced synthesis of amorphous iron-nickel wire-like nanostructures. Materials Chemistry and Physics, 2020, 246, 122812.	4.0	11
13	Amorphous Fe _{<i>x</i>} Co _{1–<i>x</i>} Wire-like Nanostructures Manufactured through Surfactant-Free Magnetic-Field-Induced Synthesis. Crystal Growth and Design, 2020, 20, 3208-3216.	3.0	7
14	Towards Magnetic Bimetallic Wire-Like Nanostructures — Magnetic Field as Growth Parameter. Acta Physica Polonica A, 2020, 137, 59-61.	0.5	1
15	Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries. Ceramics International, 2020, 46, 20856-20864.	4.8	13
16	Anomalous size effect in thermal residual stresses in pressure sintered alumina-chromium composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138111.	5.6	5
17	TEM Studies of Fe1â~'xNix Nanowires by Magnetic-Field-Induced Synthesis. Microscopy and Microanalysis, 2019, 25, 2194-2195.	0.4	0
18	Hybrid electrode composed of multiwall carbon nanotubes decorated with magnetite nanoparticles for aqueous supercapacitors. Journal of Energy Storage, 2019, 26, 101020.	8.1	26

MARCIN KRAJEWSKI

#	Article	IF	CITATIONS
19	Magnetic and ultrasonic thermal effects of magnetic nanoparticles in a tissue phantom. , 2019, , .		О
20	Optical measurements of thermal residual stresses in alumina reinforced with chromium. Journal of Applied Physics, 2019, 125, 135104.	2.5	5
21	Preliminary Studies on Biodegradable Zinc Oxide Nanoparticles Doped with Fe as a Potential Form of Iron Delivery to the Living Organism. Nanoscale Research Letters, 2019, 14, 373.	5.7	11
22	Thermal Treatment of Chains of Amorphous Fe _{1–<i>x</i>} Co <i> _x </i> Nanoparticles Made by Magnetic-Field-Induced Coreduction Reaction. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	4
23	Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 346-354.	2.3	17
24	Phase Evolution of Iron Nanoparticles Subjected to Thermal Treatment. Acta Physica Polonica A, 2018, 134, 1015-1020.	0.5	0
25	Nanocomposite composed of multiwall carbon nanotubes covered by hematite nanoparticles as anode material for Li-ion batteries. Electrochimica Acta, 2017, 228, 82-90.	5.2	8
26	Magnetic-field-induced synthesis of magnetic wire-like micro- and nanostructures. Nanoscale, 2017, 9, 16511-16545.	5.6	28
27	Phase Analysis of Magnetic Inclusions in Nanomaterials Based on Multiwall Carbon Nanotubes. Acta Physica Polonica A, 2017, 131, 863-865.	0.5	1
28	High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 3900-3909.	2.8	42
29	Influence of Iron Nanowires Oxidation on Their Semiconducting Properties. Acta Physica Polonica A, 2016, 129, A-135-A-137.	0.5	4
30	High temperature annealing of iron nanowires. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 862-866.	1.8	15
31	Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction. Beilstein Journal of Nanotechnology, 2015, 6, 1652-1660.	2.8	39
32	Preparation and Characterization of Hematite-Multiwall Carbon Nanotubes Nanocomposite. Journal of Superconductivity and Novel Magnetism, 2015, 28, 901-904.	1.8	3
33	The influence of thermal annealing on structure and oxidation of iron nanowires. Nukleonika, 2015, 60, 87-91.	0.8	10
34	Iron nanoparticles and nanowires as modifiers of carbon paste electrodes for the detection of traces of copper, lead and zinc ions in water. , 0, 208, 322-329.		3