Christian Arthur Clermont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543417/publications.pdf

Version: 2024-02-01

643344 721071 22 710 15 citations h-index papers

g-index 23 23 23 812 docs citations times ranked citing authors all docs

23

#	Article	IF	CITATIONS
1	The influence of midsole shear on running economy and smoothness with a 3D-printed midsole. Sports Biomechanics, 2023, 22, 410-421.	0.8	4
2	Same name, same game, but is it different? An investigation of female rugby union match events in Canadian Varsity players. International Journal of Sports Science and Coaching, 2022, 17, 1119-1127.	0.7	4
3	Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis. Sensors, 2022, 22, 1722.	2.1	35
4	Sex differences in the regularity and symmetry of gait in older adults with and without knee osteoarthritis. Gait and Posture, 2022, 95, 192-197.	0.6	4
5	Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit. Sensors, 2021, 21, 2896.	2.1	8
6	Runners' Perspectives on â€~Smart' Wearable Technology and Its Use for Preventing Injury. International Journal of Human-Computer Interaction, 2020, 36, 31-40.	3.3	35
7	New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments. Frontiers in Bioengineering and Biotechnology, 2020, 8, 86.	2.0	18
8	Fatigue-Related Changes in Running Gait Patterns Persist in the Days Following a Marathon Race. Journal of Sport Rehabilitation, 2020, 29, 934-941.	0.4	10
9	Running patterns for male and female competitive and recreational runners based on accelerometer data. Journal of Sports Sciences, 2019, 37, 204-211.	1.0	57
10	New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern?. Sensors, 2019, 19, 2516.	2.1	12
11	Automated Accelerometer-Based Gait Event Detection During Multiple Running Conditions. Sensors, 2019, 19, 1483.	2.1	49
12	Subject-specific and group-based running pattern classification using a single wearable sensor. Journal of Biomechanics, 2019, 84, 227-233.	0.9	36
13	Classification of higher- and lower-mileage runners based on running kinematics. Journal of Sport and Health Science, 2019, 8, 249-257.	3.3	27
14	New Considerations for Wearable Technology Data: Changes in Running Biomechanics During a Marathon. Journal of Applied Biomechanics, 2019, 35, 401-409.	0.3	30
15	Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods. Journal of Biomechanics, 2018, 71, 94-99.	0.9	39
16	The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait and Posture, 2018, 63, 124-138.	0.6	168
17	Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS ONE, 2018, 13, e0203839.	1.1	42
18	Kinematic Gait Patterns in Competitive and Recreational Runners. Journal of Applied Biomechanics, 2017, 33, 268-276.	0.3	39

#	Article	IF	CITATIONS
19	The use of real-time feedback to improve kinematic marker placement consistency among novice examiners. Gait and Posture, 2017, 58, 440-445.	0.6	2
20	Fuzzy Inference System-based Recognition of Slow, Medium and Fast Running Conditions using a Triaxial Accelerometer. Procedia Computer Science, 2017, 114, 401-407.	1.2	18
21	Accelerometer-Based Step Regularity Is Lower in Older Adults with Bilateral Knee Osteoarthritis. Frontiers in Human Neuroscience, 2016, 10, 625.	1.0	32
22	Accelerometer-based determination of gait variability in older adults with knee osteoarthritis. Gait and Posture, 2016, 50, 126-130.	0.6	40