List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45427/publications.pdf Version: 2024-02-01

FDIC D SKAAD

#	Article	IF	CITATIONS
1	Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. Journal of Proteome Research, 2023, 22, 1394-1405.	3.7	4
2	DnaJ and ClpX Are Required for HitRS and HssRS Two-Component System Signaling in Bacillus anthracis. Infection and Immunity, 2022, 90, IAI0056021.	2.2	4
3	Iron serum levels and iron homeostasis parameters in patients with nosocomial pneumonia treated with cefiderocol: post hoc analysis of the APEKS-NP study. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 467-476.	2.9	4
4	Ornithine supports C. difficile gut carriage. Nature Metabolism, 2022, 4, 7-8.	11.9	0
5	Mitochondrial Calcium Uniporter Affects Neutrophil Bactericidal Activity during Staphylococcus aureus Infection. Infection and Immunity, 2022, 90, IAI0055121.	2.2	5
6	Increased Dietary Manganese Impairs Neutrophil Extracellular Trap Formation Rendering Neutrophils Ineffective at Combating Staphylococcus aureus. Infection and Immunity, 2022, 90, iai0068521.	2.2	1
7	An RNA-binding protein acts as a major post-transcriptional modulator in Bacillus anthracis. Nature Communications, 2022, 13, 1491.	12.8	4
8	Host Polyunsaturated Fatty Acids Potentiate Aminoglycoside Killing of Staphylococcus aureus. Microbiology Spectrum, 2022, 10, e0276721.	3.0	6
9	Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis. ELife, 2022, 11, .	6.0	16
10	Altered Mitochondrial Homeostasis during Systemic Lupus Erythematosus Impairs Neutrophil Extracellular Trap Formation Rendering Neutrophils Ineffective at Combating <i>Staphylococcus aureus</i> . Journal of Immunology, 2022, 208, 454-463.	0.8	5
11	Bacterial hydrophilins promote pathogen desiccation tolerance. Cell Host and Microbe, 2022, 30, 975-987.e7.	11.0	13
12	Screening transcriptional connections in Staphylococcus aureus using high-throughput transduction of bioluminescent reporter plasmids. Microbiology (United Kingdom), 2022, 168, .	1.8	2
13	Multimodal Imaging Mass Spectrometry of Murine Gastrointestinal Tract with Retained Luminal Content. Journal of the American Society for Mass Spectrometry, 2022, 33, 1073-1076.	2.8	2
14	Gram-negative bacteria act as a reservoir for aminoglycoside antibiotics that interact with host factors to enhance bacterial killing in a mouse model of pneumonia. FEMS Microbes, 2022, 3, .	2.1	0
15	Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell, 2022, 185, 2148-2163.e27.	28.9	39
16	Human Monoclonal Antibodies to Escherichia coli Outer Membrane Protein A Porin Domain Cause Aggregation but Do Not Alter <i>In Vivo</i> Bacterial Burdens in a Murine Sepsis Model. Infection and Immunity, 2022, , e0017622.	2.2	0
17	Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nature Reviews Microbiology, 2022, 20, 657-670.	28.6	143
18	Visualizing Staphylococcus aureus pathogenic membrane modification within the host infection environment by multimodal imaging mass spectrometry. Cell Chemical Biology, 2022, 29, 1209-1217.e4.	5.2	4

#	Article	IF	CITATIONS
19	<i>Staphylococcus aureus</i> lacking a functional MntABC manganese import system has increased resistance to copper. Molecular Microbiology, 2021, 115, 554-573.	2.5	20
20	Spatially Targeted Proteomics of the Host–Pathogen Interface during Staphylococcal Abscess Formation. ACS Infectious Diseases, 2021, 7, 101-113.	3.8	17
21	Lipocalin Blc is a potential hemeâ€binding protein. FEBS Letters, 2021, 595, 206-219.	2.8	4
22	Murine Models for Staphylococcal Infection. Current Protocols, 2021, 1, e52.	2.9	14
23	Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. Npj Biofilms and Microbiomes, 2021, 7, 22.	6.4	24
24	Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infection and Immunity, 2021, 89, e0014621.	2.2	7
25	Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annual Review of Microbiology, 2021, 75, 407-426.	7.3	2
26	Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infection and Immunity, 2021, 89, e0045421.	2.2	17
27	The Zinc Transporter ZnuABC Is Critical for the Virulence of Chromobacterium violaceum and Contributes to Diverse Zinc-Dependent Physiological Processes. Infection and Immunity, 2021, 89, e0031121.	2.2	4
28	Simultaneous Exposure to Intracellular and Extracellular Photosensitizers for the Treatment of Staphylococcus aureus Infections. Antimicrobial Agents and Chemotherapy, 2021, 65, e0091921.	3.2	4
29	Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Reports, 2021, 36, 109683.	6.4	16
30	Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Science Advances, 2021, 7, eabj2101.	10.3	61
31	The impact of metal availability on immune function during infection. Trends in Endocrinology and Metabolism, 2021, 32, 916-928.	7.1	31
32	Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nature Communications, 2021, 12, 7016.	12.8	35
33	Clostridioides difficile strain-dependent and strain-independent adaptations to a microaerobic environment. Microbial Genomics, 2021, 7, .	2.0	7
34	Optimization of optical parameters for improved photodynamic therapy of Staphylococcus aureus using endogenous coproporphyrin III. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101624.	2.6	13
35	Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathogens, 2020, 16, e1008995.	4.7	75
36	Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress. Cell Reports, 2020, 32, 108129.	6.4	14

#	Article	IF	CITATIONS
37	Editorial overview: Microbe–microbe interactions: the enemy of my enemy is my friend. Current Opinion in Microbiology, 2020, 53, iii-v.	5.1	2
38	<i>Staphylococcus aureus</i> Glucose-Induced Biofilm Accessory Protein A (GbaA) Is a Monothiol-Dependent Electrophile Sensor. Biochemistry, 2020, 59, 2882-2895.	2.5	11
39	Peptidoglycan editing provides immunity to <i>Acinetobacter baumannii</i> during bacterial warfare. Science Advances, 2020, 6, eabb5614.	10.3	44
40	A Small-Molecule Modulator of Metal Homeostasis in Gram-Positive Pathogens. MBio, 2020, 11, .	4.1	8
41	Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. MBio, 2020, 11, .	4.1	7
42	4345 Two-step Algorithm for Clostridioides difficile is Inadequate for Differentiating Infection from Colonization in Children. Journal of Clinical and Translational Science, 2020, 4, 150-150.	0.6	0
43	Histidine Utilization Is a Critical Determinant of <i>Acinetobacter</i> Pathogenesis. Infection and Immunity, 2020, 88, .	2.2	14
44	ZupT Facilitates Clostridioides difficile Resistance to Host-Mediated Nutritional Immunity. MSphere, 2020, 5, .	2.9	23
45	A Small Membrane Stabilizing Protein Critical to the Pathogenicity of Staphylococcus aureus. Infection and Immunity, 2020, 88, .	2.2	9
46	Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. Cell Host and Microbe, 2020, 28, 411-421.e6.	11.0	36
47	Broad-spectrum suppression of bacterial pneumonia by aminoglycoside-propagated Acinetobacter baumannii. PLoS Pathogens, 2020, 16, e1008374.	4.7	6
48	The Response of <i>Acinetobacter baumannii</i> to Hydrogen Sulfide Reveals Two Independent Persulfide-Sensing Systems and a Connection to Biofilm Regulation. MBio, 2020, 11, .	4.1	33
49	Integrated molecular imaging technologies for investigation of metals in biological systems: A brief review. Current Opinion in Chemical Biology, 2020, 55, 127-135.	6.1	17
50	The Manganese-Responsive Transcriptional Regulator MumR Protects Acinetobacter baumannii from Oxidative Stress. Infection and Immunity, 2020, 88, .	2.2	28
51	Bacillus anthracis Responds to Targocil-Induced Envelope Damage through EdsRS Activation of Cardiolipin Synthesis. MBio, 2020, 11, .	4.1	8
52	Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe, 2020, 63, 102210.	2.1	13
53	Potential positive and negative consequences of ZnT8 inhibition. Journal of Endocrinology, 2020, 246, 189-205.	2.6	10
54	Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. PLoS Pathogens, 2020, 16, e1009148.	4.7	5

#	Article	IF	CITATIONS
55	Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. , 2020, 16, e1009148.		0
56	Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. , 2020, 16, e1009148.		0
57	Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. , 2020, 16, e1009148.		0
58	Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. , 2020, 16, e1009148.		0
59	Nutrient Zinc at the Host–Pathogen Interface. Trends in Biochemical Sciences, 2019, 44, 1041-1056.	7.5	88
60	Staphylococcus aureus Coproporphyrinogen III Oxidase Is Required for Aerobic and Anaerobic Heme Synthesis. MSphere, 2019, 4, .	2.9	9
61	<i>Staphylococcus aureus</i> exhibits heterogeneous siderophore production within the vertebrate host. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21980-21982.	7.1	62
62	The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. Infection and Immunity, 2019, 87, .	2.2	34
63	Mechanistic Insights into the Metal-Dependent Activation of Zn ^{II} -Dependent Metallochaperones. Inorganic Chemistry, 2019, 58, 13661-13672.	4.0	26
64	Misoprostol protects mice against severe Clostridium difficile infection and promotes recovery of the gut microbiota after antibiotic perturbation. Anaerobe, 2019, 58, 89-94.	2.1	16
65	Control of Metabolite Flux during the Final Steps of Heme <i>b</i> Biosynthesis in Gram-Positive Bacteria. Biochemistry, 2019, 58, 5259-5270.	2.5	16
66	Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nature Communications, 2019, 10, 2763.	12.8	80
67	Adjunctive transferrin to reduce the emergence of antibiotic resistance in Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2019, 74, 2631-2639.	3.0	12
68	Targeting Mobilization of Ferrous Iron in <i>Pseudomonas aeruginosa</i> Infection with an Iron(II)-Caged LpxC Inhibitor. ACS Infectious Diseases, 2019, 5, 1366-1375.	3.8	6
69	Modification of the Gastric Mucosal Microbiota by a Strain-Specific Helicobacter pylori Oncoprotein and Carcinogenic Histologic Phenotype. MBio, 2019, 10, .	4.1	36
70	MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Analytical Chemistry, 2019, 91, 7578-7585.	6.5	51
71	Metals as phagocyte antimicrobial effectors. Current Opinion in Immunology, 2019, 60, 1-9.	5.5	99
72	Total Synthesis of Hinduchelins A–D, Stereochemical Revision of Hinduchelin A, and Biological Evaluation of Natural and Unnatural Analogues. Journal of Organic Chemistry, 2019, 84, 6459-6464.	3.2	4

#	Article	IF	CITATIONS
73	Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of <i>Staphylococcus aureus</i> . MBio, 2019, 10, .	4.1	38
74	Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii. Cell Chemical Biology, 2019, 26, 745-755.e7.	5.2	61
75	The Innate Immune Protein S100A9 Protects from T-Helper Cell Type 2–mediated Allergic Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 459-468.	2.9	25
76	Zinc intoxication induces ferroptosis in A549 human lung cells. Metallomics, 2019, 11, 982-993.	2.4	37
77	Assessing Acinetobacter baumannii Virulence and Persistence in a Murine Model of Lung Infection. Methods in Molecular Biology, 2019, 1946, 289-305.	0.9	17
78	Cuts Both Ways: Proteases Modulate Virulence of Enterohemorrhagic <i>Escherichia coli</i> . MBio, 2019, 10, .	4.1	1
79	Apotransferrin in Combination with Ciprofloxacin Slows Bacterial Replication, Prevents Resistance Amplification, and Increases Antimicrobial Regimen Effect. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	5
80	An Acinetobacter baumannii, Zinc-Regulated Peptidase Maintains Cell Wall Integrity during Immune-Mediated Nutrient Sequestration. Cell Reports, 2019, 26, 2009-2018.e6.	6.4	61
81	A Phenome-Wide Association Study Uncovers a Pathological Role of Coagulation Factor X during Acinetobacter baumannii Infection. Infection and Immunity, 2019, 87, .	2.2	8
82	The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation. MBio, 2019, 10, .	4.1	21
83	Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism. MBio, 2019, 10,	4.1	44
84	Human <i> V _H 1-69 </i> Gene-Encoded Human Monoclonal Antibodies against Staphylococcus aureus IsdB Use at Least Three Distinct Modes of Binding To Inhibit Bacterial Growth and Pathogenesis. MBio, 2019, 10, .	4.1	16
85	Human mAbs to Staphylococcus aureus IsdA Provide Protection Through Both Heme-Blocking and Fc-Mediated Mechanisms. Journal of Infectious Diseases, 2019, 219, 1264-1273.	4.0	20
86	Nonsteroidal Anti-inflammatory Drugs Alter the Microbiota and Exacerbate <i>Clostridium difficile</i> Colitis while Dysregulating the Inflammatory Response. MBio, 2019, 10, .	4.1	39
87	Synthesis of the Siderophore Coelichelin and Its Utility as a Probe in the Study of Bacterial Metal Sensing and Response. Organic Letters, 2019, 21, 679-682.	4.6	12
88	<i>Acinetobacter baumannii</i> OxyR Regulates the Transcriptional Response to Hydrogen Peroxide. Infection and Immunity, 2019, 87, .	2.2	48
89	S100 Proteins in the Innate Immune Response to Pathogens. Methods in Molecular Biology, 2019, 1929, 275-290.	0.9	47
90	Fur regulation of Staphylococcus aureus heme oxygenases is required for heme homeostasis. International Journal of Medical Microbiology, 2018, 308, 582-589.	3.6	7

#	Article	IF	CITATIONS
91	<i>Staphylococcus aureus</i> HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis. MBio, 2018, 9, .	4.1	18
92	Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions. Science Translational Medicine, 2018, 10, .	12.4	58
93	The role of zinc and nutritional immunity in <i>Clostridium difficile</i> infection. Gut Microbes, 2018, 9, 00-00.	9.8	27
94	Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection. PLoS Pathogens, 2018, 14, e1007486.	4.7	34
95	Molecular Basis for the Evolution of Species-Specific Hemoglobin Capture by Staphylococcus aureus. MBio, 2018, 9, .	4.1	16
96	Nonconventional Therapeutics against <i>Staphylococcus aureus</i> . Microbiology Spectrum, 2018, 6,	3.0	12
97	Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10124-10129.	7.1	71
98	Drug-Resistant <i>Staphylococcus aureus</i> Strains Reveal Distinct Biochemical Features with Raman Microspectroscopy. ACS Infectious Diseases, 2018, 4, 1197-1210.	3.8	31
99	Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nature Chemical Biology, 2018, 14, 609-617.	8.0	67
100	An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis. Journal of Proteome Research, 2018, 17, 3396-3408.	3.7	32
101	The Impact of Dietary Transition Metals on Host-Bacterial Interactions. Cell Host and Microbe, 2018, 23, 737-748.	11.0	141
102	Evidence for control of metabolite flux through a bacterial heme biosynthetic pathway. FASEB Journal, 2018, 32, 527.14.	0.5	0
103	RAGE-Mediated Suppression of Interleukin-10 Results in Enhanced Mortality in a Murine Model of Acinetobacter baumannii Sepsis. Infection and Immunity, 2017, 85, .	2.2	30
104	Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular Responses and Reveals Global Drug Mechanisms of Action. Journal of Proteome Research, 2017, 16, 1364-1375.	3.7	34
105	Accelerating Precision Drug Development and Drug Repurposing by Leveraging Human Genetics. Assay and Drug Development Technologies, 2017, 15, 113-119.	1.2	30
106	Mechanisms of Pyocyanin Toxicity and Genetic Determinants of Resistance in Staphylococcus aureus. Journal of Bacteriology, 2017, 199, .	2.2	54
107	Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. MSphere, 2017, 2, .	2.9	15
108	Dietary Manganese Promotes Staphylococcal Infection of the Heart. Cell Host and Microbe, 2017, 22, 531-542.e8.	11.0	51

#	Article	IF	CITATIONS
109	Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome <i>S</i> -Sulfhydration and Global Virulence Regulation in <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2017, 3, 744-755.	3.8	73
110	Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proceedings of the United States of America, 2017, 114, E6652-E6659.	7.1	18
111	Crossed Wires: Interspecies Interference Blocks Pathogen Colonization. Cell Host and Microbe, 2017, 22, 721-723.	11.0	2
112	In vivo bioluminescence imaging of labile iron accumulation in a murine model of <i>Acinetobacter baumannii</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12669-12674.	7.1	100
113	MALDI Mass Spectrometry and Infectious Diseases. NATO Science for Peace and Security Series A: Chemistry and Biology, 2017, , 133-147.	0.5	0
114	Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. MSphere, 2017, 2, .	2.9	71
115	Manganese and Nutritional Immunity. , 2017, , 377-387.		4
116	Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. Journal of Biological Chemistry, 2017, 292, 19628-19638.	3.4	41
117	A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity. PLoS Pathogens, 2017, 13, e1006125.	4.7	89
118	Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress. ACS Infectious Diseases, 2016, 2, 572-578.	3.8	13
119	Heme Synthesis and Acquisition in Bacterial Pathogens. Journal of Molecular Biology, 2016, 428, 3408-3428.	4.2	257
120	Transition Metals and Virulence in Bacteria. Annual Review of Genetics, 2016, 50, 67-91.	7.6	328
121	Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nature Medicine, 2016, 22, 1330-1334.	30.7	201
122	Binding of transition metals to S100 proteins. Science China Life Sciences, 2016, 59, 792-801.	4.9	59
123	Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation. MBio, 2016, 7, .	4.1	57
124	The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nature Communications, 2016, 7, 11951.	12.8	114
125	CtaM Is Required for Menaquinol Oxidase <i>aa</i> ₃ Function in Staphylococcus aureus. MBio, 2016, 7, .	4.1	34
126	A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus. Cell Chemical Biology, 2016, 23, 1351-1361.	5.2	30

#	Article	IF	CITATIONS
127	TLR9 activation suppresses inflammation in response to <i>Helicobacter pylori</i> infection. American Journal of Physiology - Renal Physiology, 2016, 311, G852-G858.	3.4	35
128	Nextâ€generation technologies for spatial proteomics: Integrating ultraâ€high speed MALDIâ€TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics, 2016, 16, 1678-1689.	2.2	123
129	The Response of Acinetobacter baumannii to Zinc Starvation. Cell Host and Microbe, 2016, 19, 826-836.	11.0	108
130	Salmonella Mitigates Oxidative Stress and Thrives in the Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. Cell Host and Microbe, 2016, 19, 814-825.	11.0	109
131	Repurposing the Nonsteroidal Anti-inflammatory Drug Diflunisal as an Osteoprotective, Antivirulence Therapy for Staphylococcus aureus Osteomyelitis. Antimicrobial Agents and Chemotherapy, 2016, 60, 5322-5330.	3.2	44
132	Neutrophil-generated oxidative stress and protein damage in <i>Staphylococcus aureus</i> . Pathogens and Disease, 2016, 74, ftw060.	2.0	103
133	Time-resolved Studies of IsdG Protein Identify Molecular Signposts along the Non-canonical Heme Oxygenase Pathway. Journal of Biological Chemistry, 2016, 291, 862-871.	3.4	19
134	Decoupling Activation of Heme Biosynthesis from Anaerobic Toxicity in a Molecule Active in <i>Staphylococcus aureus</i> . ACS Chemical Biology, 2016, 11, 1354-1361.	3.4	10
135	Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular <i>Aspergillus fumigatus</i> Hyphal Growth and Corneal Infection. Journal of Immunology, 2016, 196, 336-344.	0.8	130
136	Competing for Iron: Duplication and Amplification of the isd Locus in Staphylococcus lugdunensis HKU09-01 Provides a Competitive Advantage to Overcome Nutritional Limitation. PLoS Genetics, 2016, 12, e1006246.	3.5	22
137	Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence. PLoS Pathogens, 2016, 12, e1005391.	4.7	60
138	Manganese homeostasis and utilization in pathogenic bacteria. Molecular Microbiology, 2015, 97, 216-228.	2.5	95
139	Helicobacter pylori Resists the Antimicrobial Activity of Calprotectin via Lipid A Modification and Associated Biofilm Formation. MBio, 2015, 6, e01349-15.	4.1	43
140	Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Staphylococcus aureus Infections. PLoS Pathogens, 2015, 11, e1005026.	4.7	59
141	Bacterial Hypoxic Responses Revealed as Critical Determinants of the Host-Pathogen Outcome by TnSeq Analysis of Staphylococcus aureus Invasive Infection. PLoS Pathogens, 2015, 11, e1005341.	4.7	118
142	The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. Metallomics, 2015, 7, 1023-1035.	2.4	59
143	MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data. Journal of the American Society for Mass Spectrometry, 2015, 26, 974-985.	2.8	95
144	Metals in infectious diseases and nutritional immunity. Metallomics, 2015, 7, 926-928.	2.4	82

#	Article	IF	CITATIONS
145	The Human Antimicrobial Protein Calgranulin C Participates in Control of Helicobacter pylori Growth and Regulation of Virulence. Infection and Immunity, 2015, 83, 2944-2956.	2.2	58
146	Bacillithiol has a role in <scp>F</scp> e– <scp>S</scp> cluster biogenesis in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 98, 218-242.	2.5	40
147	Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface. Journal of Biological Chemistry, 2015, 290, 18991-18998.	3.4	190
148	Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili. PLoS Pathogens, 2015, 11, e1004697.	4.7	78
149	Existence of a ColonizingStaphylococcus aureusStrain Isolated in Diabetic Foot Ulcers. Diabetes, 2015, 64, 2991-2995.	0.6	28
150	Proteomic analyses of iron-responsive, Clp-dependent changes in Staphylococcus aureus. Pathogens and Disease, 2015, 73, .	2.0	16
151	<scp>Nfu</scp> facilitates the maturation of ironâ€sulfur proteins and participates in virulence in <scp><i>S</i></scp> <i>SS<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S<i>S</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.5	60
152	Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection. Infection and Immunity, 2015, 83, 4134-4141.	2.2	63
153	An Iron-Regulated Autolysin Remodels the Cell Wall To Facilitate Heme Acquisition in Staphylococcus lugdunensis. Infection and Immunity, 2015, 83, 3578-3589.	2.2	23
154	Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia. Thorax, 2014, 69, 1034-1042.	5.6	36
155	Differential Activation of Staphylococcus aureus Heme Detoxification Machinery by Heme Analogues. Journal of Bacteriology, 2014, 196, 1335-1342.	2.2	37
156	The Host Protein Calprotectin Modulates the Helicobacter pylori cag Type IV Secretion System via Zinc Sequestration. PLoS Pathogens, 2014, 10, e1004450.	4.7	78
157	Two-Component System Cross-Regulation Integrates Bacillus anthracis Response to Heme and Cell Envelope Stress. PLoS Pathogens, 2014, 10, e1004044.	4.7	39
158	Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiology Reviews, 2014, 38, 1235-1249.	8.6	189
159	Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii. Infection and Immunity, 2014, 82, 469-469.	2.2	2
160	Transferrin Iron Starvation Therapy for Lethal Bacterial and Fungal Infections. Journal of Infectious Diseases, 2014, 210, 254-264.	4.0	42
161	IsdB-dependent Hemoglobin Binding Is Required for Acquisition of Heme by Staphylococcus aureus. Journal of Infectious Diseases, 2014, 209, 1764-1772.	4.0	88
162	Advanced mass spectrometry technologies for the study of microbial pathogenesis. Current Opinion in Microbiology, 2014, 19, 45-51.	5.1	34

#	Article	IF	CITATIONS
163	Inter- and Intraspecies Metabolite Exchange Promotes Virulence of Antibiotic-Resistant Staphylococcus aureus. Cell Host and Microbe, 2014, 16, 531-537.	11.0	59
164	Acinetobacter baumannii Response to Host-Mediated Zinc Limitation Requires the Transcriptional Regulator Zur. Journal of Bacteriology, 2014, 196, 2616-2626.	2.2	82
165	Imaging mass spectrometry for assessing temporal proteomics: Analysis of calprotectin in <i>Acinetobacter baumannii</i> pulmonary infection. Proteomics, 2014, 14, 820-828.	2.2	48
166	Analysis of theStaphylococcus aureusabscess proteome identifies antimicrobial host proteins and bacterial stress responses at the host-pathogen interface. Pathogens and Disease, 2013, 69, n/a-n/a.	2.0	23
167	Loss of Mitochondrial Protein Fus1 Augments Host Resistance to Acinetobacter baumannii Infection. Infection and Immunity, 2013, 81, 4461-4469.	2.2	19
168	Regulation of Host Hemoglobin Binding by the Staphylococcus aureus Clp Proteolytic System. Journal of Bacteriology, 2013, 195, 5041-5050.	2.2	44
169	The Chlorite Dismutase (HemQ) from Staphylococcus aureus Has a Redox-sensitive Heme and Is Associated with the Small Colony Variant Phenotype. Journal of Biological Chemistry, 2013, 288, 23488-23504.	3.4	52
170	Recent advances in experimental models of osteomyelitis. Expert Review of Anti-Infective Therapy, 2013, 11, 1263-1265.	4.4	11
171	Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii. Infection and Immunity, 2013, 81, 542-551.	2.2	78
172	Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3841-3846.	7.1	325
173	Iron in Infection and Immunity. Cell Host and Microbe, 2013, 13, 509-519.	11.0	1,000
174	A Secreted Bacterial Protease Tailors the Staphylococcus aureus Virulence Repertoire to Modulate Bone Remodeling during Osteomyelitis. Cell Host and Microbe, 2013, 13, 759-772.	11.0	188
175	Two Heme-Dependent Terminal Oxidases Power Staphylococcus aureus Organ-Specific Colonization of the Vertebrate Host. MBio, 2013, 4, .	4.1	123
176	Heme and Infectious Diseases. Handbook of Porphyrin Science, 2013, , 317-377.	0.8	0
177	MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese. Infection and Immunity, 2013, 81, 3395-3405.	2.2	173
178	Activation of heme biosynthesis by a small molecule that is toxic to fermenting <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8206-8211.	7.1	40
179	Staphylococcus aureus Growth using Human Hemoglobin as an Iron Source. Journal of Visualized Experiments, 2013, , .	0.3	21
180	The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Frontiers in Cellular and Infection Microbiology, 2013, 3, 95.	3.9	87

#	Article	IF	CITATIONS
181	Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS ONE, 2013, 8, e55142.	2.5	144
182	Taste for Blood: Hemoglobin as a Nutrient Source for Pathogens. PLoS Pathogens, 2012, 8, e1002535.	4.7	68
183	Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration. PLoS Pathogens, 2012, 8, e1003068.	4.7	226
184	Inhibition of bacterial superoxide defense. Virulence, 2012, 3, 325-328.	4.4	16
185	The impact of metal sequestration on Staphylococcus aureus metabolism. Current Opinion in Microbiology, 2012, 15, 10-14.	5.1	30
186	Metalloregulation of Gram-positive pathogen physiology. Current Opinion in Microbiology, 2012, 15, 169-174.	5.1	34
187	A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes and Infection, 2012, 14, 217-227.	1.9	150
188	Zinc Sequestration by the Neutrophil Protein Calprotectin Enhances Salmonella Growth in the Inflamed Gut. Cell Host and Microbe, 2012, 11, 227-239.	11.0	286
189	Monitoring the Inflammatory Response to Infection through the Integration of MALDI IMS and MRI. Cell Host and Microbe, 2012, 11, 664-673.	11.0	71
190	Menaquinone biosynthesis potentiates haem toxicity in <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2012, 86, 1376-1392.	2.5	83
191	Nutritional immunity: transition metals at the pathogen–host interface. Nature Reviews Microbiology, 2012, 10, 525-537.	28.6	1,256
192	Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Seminars in Immunopathology, 2012, 34, 215-235.	6.1	115
193	Host-microbe interactions that shape the pathogenesis of <i>Acinetobacter baumannii</i> infection. Cellular Microbiology, 2012, 14, 1336-1344.	2.1	92
194	Haemin represses the haemolytic activity of Staphylococcus aureus in an Sae-dependent manner. Microbiology (United Kingdom), 2012, 158, 2619-2631.	1.8	22
195	The Flexible Loop of <i>Staphylococcus aureus</i> IsdG Is Required for Its Degradation in the Absence of Heme. Biochemistry, 2011, 50, 6730-6737.	2.5	20
196	Nutrient Metal Sequestration by Calprotectin Inhibits Bacterial Superoxide Defense, Enhancing Neutrophil Killing of Staphylococcus aureus. Cell Host and Microbe, 2011, 10, 158-164.	11.0	337
197	Molecular Mechanisms of <i>Staphylococcus aureus</i> Iron Acquisition. Annual Review of Microbiology, 2011, 65, 129-147.	7.3	310
198	The evolution of a superbug: how <i>Staphylococcus aureus</i> overcomes its unique susceptibility to polyamines. Molecular Microbiology, 2011, 82, 1-3.	2.5	8

#	Article	IF	CITATIONS
199	Staphylococcus lugdunensis IsdG Liberates Iron from Host Heme. Journal of Bacteriology, 2011, 193, 4749-4757.	2.2	43
200	Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus. Journal of Biological Chemistry, 2011, 286, 13522-13531.	3.4	91
201	Structural Basis for Hemoglobin Capture by Staphylococcus aureus Cell-surface Protein, IsdH. Journal of Biological Chemistry, 2011, 286, 38439-38447.	3.4	50
202	Miniature on-chip detection of unpurified methicillin-resistant Staphylococcus aureus (MRSA) DNA using real-time PCR. Journal of Biotechnology, 2010, 146, 93-99.	3.8	25
203	Nutritional immunity beyond iron: a role for manganese and zinc. Current Opinion in Chemical Biology, 2010, 14, 218-224.	6.1	539
204	The IsdGâ€family of haem oxygenases degrades haem to a novel chromophore. Molecular Microbiology, 2010, 75, 1529-1538.	2.5	138
205	Overcoming the Heme Paradox: Heme Toxicity and Tolerance in Bacterial Pathogens. Infection and Immunity, 2010, 78, 4977-4989.	2.2	249
206	Membrane Damage Elicits an Immunomodulatory Program in Staphylococcus aureus. PLoS Pathogens, 2010, 6, e1000802.	4.7	41
207	The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathogens, 2010, 6, e1000949.	4.7	716
208	<i>Staphylococcus aureus</i> Fur Regulates the Expression of Virulence Factors That Contribute to the Pathogenesis of Pneumonia. Infection and Immunity, 2010, 78, 1618-1628.	2.2	127
209	Specificity for Human Hemoglobin Enhances Staphylococcus aureus Infection. Cell Host and Microbe, 2010, 8, 544-550.	11.0	136
210	Inactivation of Phospholipase D Diminishes <i>Acinetobacter baumannii</i> Pathogenesis. Infection and Immunity, 2010, 78, 1952-1962.	2.2	190
211	<i>Bacillus anthracis</i> HssRS signalling to HrtAB regulates haem resistance during infection. Molecular Microbiology, 2009, 72, 763-778.	2.5	75
212	The Heme Sensor System of <i>Staphylococcus aureus</i> . Contributions To Microbiology, 2009, 16, 120-135.	2.1	73
213	Subcellular Localization of the <i>Staphylococcus aureus</i> Heme Iron Transport Components IsdA and IsdB. Infection and Immunity, 2009, 77, 2624-2634.	2.2	66
214	<i>Staphylococcus aureus</i> haem oxygenases are differentially regulated by iron and haem. Molecular Microbiology, 2008, 69, 1304-1315.	2.5	73
215	Metal Chelation and Inhibition of Bacterial Growth in Tissue Abscesses. Science, 2008, 319, 962-965.	12.6	751
216	Neutrophil Microbicides Induce a Pathogen Survival Response in Community-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of Immunology, 2008, 180, 500-509.	0.8	126

#	Article	IF	CITATIONS
217	<i>Staphylococcus aureus</i> HrtA Is an ATPase Required for Protection against Heme Toxicity and Prevention of a Transcriptional Heme Stress Response. Journal of Bacteriology, 2008, 190, 3588-3596.	2.2	67
218	Ruffling of Metalloporphyrins Bound to IsdG and IsdI, Two Heme-degrading Enzymes in Staphylococcus aureus. Journal of Biological Chemistry, 2008, 283, 30957-30963.	3.4	97
219	Signaling and DNA-binding Activities of the Staphylococcus aureus HssR-HssS Two-component System Required for Heme Sensing. Journal of Biological Chemistry, 2007, 282, 26111-26121.	3.4	78
220	A Staphylococcus aureus Regulatory System that Responds to Host Heme and Modulates Virulence. Cell Host and Microbe, 2007, 1, 109-119.	11.0	212
221	Intracellular metalloporphyrin metabolism in Staphylococcus aureus. BioMetals, 2007, 20, 333-345.	4.1	105
222	Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability. PLoS Pathogens, 2006, 2, e87.	4.7	186
223	Staphylococcus aureus IsdB Is a Hemoglobin Receptor Required for Heme Iron Utilization. Journal of Bacteriology, 2006, 188, 8421-8429.	2.2	277
224	Bacillus anthracis IsdG, a Heme-Degrading Monooxygenase. Journal of Bacteriology, 2006, 188, 1071-1080.	2.2	112
225	Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes and Infection, 2004, 6, 390-397.	1.9	194
226	Iron-Source Preference of Staphylococcus aureus Infections. Science, 2004, 305, 1626-1628.	12.6	398
227	IsdG and IsdI, Heme-degrading Enzymes in the Cytoplasm of Staphylococcus aureus. Journal of Biological Chemistry, 2004, 279, 436-443.	3.4	253
228	Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Molecular Microbiology, 2003, 51, 297-297.	2.5	1
229	Passage of Heme-Iron Across the Envelope of <i>Staphylococcus aureus</i> . Science, 2003, 299, 906-909.	12.6	544
230	Nonconventional Therapeutics against <i>Staphylococcus aureus</i> ., 0, , 776-789.		1
231	Regulation of Virulence by Iron in Gram-Positive Bacteria. , 0, , 79-105.		О