Giovanna Paolone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4542613/publications.pdf

Version: 2024-02-01

36 papers 1,272 citations

³⁹⁴²⁸⁶
19
h-index

395590 33 g-index

36 all docs 36 docs citations

36 times ranked

1702 citing authors

#	Article	IF	CITATIONS
1	d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behavioural Brain Research, 2006, 172, 173-178.	1.2	141
2	Cholinergic Control over Attention in Rats Prone to Attribute Incentive Salience to Reward Cues. Journal of Neuroscience, 2013, 33, 8321-8335.	1.7	129
3	Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behavioural Brain Research, 2006, 168, 323-325.	1.2	103
4	The facilitative effects of d-cycloserine on extinction of a cocaine-induced conditioned place preference can be long lasting and resistant to reinstatement. Psychopharmacology, 2009, 202, 403-409.	1.5	88
5	Deficits in attentional control: Cholinergic mechanisms and circuitry-based treatment approaches Behavioral Neuroscience, 2011, 125, 825-835.	0.6	85
6	Modeling the role of environment in addiction. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2007, 31, 1639-1653.	2.5	65
7	Modeling Fall Propensity in Parkinson's Disease: Deficits in the Attentional Control of Complex Movements in Rats with Cortical-Cholinergic and Striatal–Dopaminergic Deafferentation. Journal of Neuroscience, 2013, 33, 16522-16539.	1.7	63
8	Seizure-Suppressant and Neuroprotective Effects of Encapsulated BDNF-Producing Cells in a Rat Model of Temporal Lobe Epilepsy. Molecular Therapy - Methods and Clinical Development, 2018, 9, 211-224.	1.8	59
9	Eltoprazine prevents levodopaâ€induced dyskinesias by reducing striatal glutamate and direct pathway activity. Movement Disorders, 2015, 30, 1728-1738.	2.2	50
10	Glucocorticoid receptors modulate dendritic spine plasticity and microglia activity in an animal model of Alzheimer's disease. Neurobiology of Disease, 2019, 132, 104568.	2.1	47
11	Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity. Scientific Reports, 2017, 7, 46288.	1.6	44
12	d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain. Neurobiology of Aging, 2015, 36, 1890-1902.	1.5	42
13	Opposite environmental regulation of heroin and amphetamine self-administration in the rat. Psychopharmacology, 2008, 198, 395-404.	1.5	38
14	Modulatory Effect of Environmental Context and Drug History on Heroin-Induced Psychomotor Activity and Fos Protein Expression in the Rat Brain. Neuropsychopharmacology, 2007, 32, 2611-2623.	2.8	35
15	Environmental modulation of cocaine self-administration in the rat. Psychopharmacology, 2007, 192, 397-406.	1.5	35
16	Time to Pay Attention: Attentional Performance Time-Stamped Prefrontal Cholinergic Activation, Diurnality, and Performance. Journal of Neuroscience, 2012, 32, 12115-12128.	1.7	32
17	Dissociation in the modulatory effects of environmental novelty on the locomotor, analgesic, and eating response to acute and repeated morphine in the rat. Psychopharmacology, 2003, 166, 146-155.	1.5	30
18	Long-Term, Targeted Delivery of GDNF from Encapsulated Cells Is Neuroprotective and Reduces Seizures in the Pilocarpine Model of Epilepsy. Journal of Neuroscience, 2019, 39, 2144-2156.	1.7	29

#	Article	lF	Citations
19	Repeated Exposures to Heroin and/or Cadmium Alter the Rate of Formation of Morphine Glucuronides in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 651-660.	1.3	25
20	Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: A model of cholinergic capacity limits. Neuropharmacology, 2013, 75, 274-285.	2.0	22
21	Selective potentiation of $(\hat{l}\pm 4)3(\hat{l}^22)2$ nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochemical Pharmacology, 2013, 86, 1487-1496.	2.0	18
22	The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behavioural Brain Research, 2020, 379, 112347.	1.2	14
23	Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders. Frontiers in Behavioral Neuroscience, 2021, 15, 661973.	1.0	13
24	Widespread Striatal Delivery of GDNF from Encapsulated Cells Prevents the Anatomical and Functional Consequences of Excitotoxicity. Neural Plasticity, 2019, 2019, 1-9.	1.0	12
25	Environmental modulation of the interoceptive effects of amphetamine in the rat. Behavioural Brain Research, 2004, 152, 149-55.	1.2	11
26	Cell-laden alginate hydrogels for the treatment of diabetes. Expert Opinion on Drug Delivery, 2020, 17, 1113-1118.	2.4	9
27	Reconsolidation of sucrose instrumental memory in rats: The role of retrieval context. Brain Research, 2019, 1714, 193-201.	1.1	8
28	Long-term, stable, targeted biodelivery and efficacy of GDNF from encapsulated cells in the rat and Goettingen miniature pig brain. Current Research in Pharmacology and Drug Discovery, 2020, 1, 19-29.	1.7	6
29	From the Gut to the Brain and Back: Therapeutic Approaches for the Treatment of Network Dysfunction in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 557928.	1.1	5
30	Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plasticity, 2020, 2020, 1-15.	1.0	5
31	Implication of sestrin3 in epilepsy and its comorbidities. Brain Communications, 2021, 3, fcaa130.	1.5	5
32	Advances in cell-laden hydrogels for delivering therapeutics. Expert Opinion on Biological Therapy, 2019, 19, 1219-1222.	1.4	3
33	Personalized Needles for Microinjections in the Rodent Brain. Journal of Visualized Experiments, 2018,	0.2	1
34	S16 ENVIRONMENTAL MODULATION OF SUBJECTIVE DRUG EFFECTS. Behavioural Pharmacology, 2005, 16, S5-S6.	0.8	0
35	B56 ENVIRONMENTAL MODULATION OF HEROIN-INDUCED LOCOMOTORY ACTIVITY AND FOS EXPRESSION. Behavioural Pharmacology, 2005, 16, S83.	0.8	0
36	Can Single Shell Diffusion MRI Detect Synaptic Plasticity in Mice?., 2019,,.		0