José Nuno Canongia Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4542197/publications.pdf

Version: 2024-02-01

225 papers

19,595 citations

63 h-index 136 g-index

235 all docs

235
docs citations

times ranked

235

10180 citing authors

#	Article	IF	CITATIONS
1	The distillation and volatility of ionic liquids. Nature, 2006, 439, 831-834.	27.8	1,926
2	Nanostructural Organization in Ionic Liquids. Journal of Physical Chemistry B, 2006, 110, 3330-3335.	2.6	1,693
3	Modeling Ionic Liquids Using a Systematic All-Atom Force Field. Journal of Physical Chemistry B, 2004, 108, 2038-2047.	2.6	1,190
4	Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions. Journal of Physical Chemistry B, 2004, 108, 16893-16898.	2.6	875
5	Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 2012, 41, 4966.	38.1	726
6	Molecular Force Field for Ionic Liquids III:  Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and Dicyanamide Anions. Journal of Physical Chemistry B, 2006, 110, 19586-19592.	2.6	504
7	On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids. Journal of Physical Chemistry B, 2005, 109, 6040-6043.	2.6	475
8	Molecular Solutes in Ionic Liquids: A Structural Perspective. Accounts of Chemical Research, 2007, 40, 1087-1096.	15.6	450
9	Nonpolar, Polar, and Associating Solutes in Ionic Liquids. Journal of Physical Chemistry B, 2006, 110, 16816-16818.	2.6	446
10	Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews, 2012, 41, 829-868.	38.1	375
11	Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion. Journal of Chemical Thermodynamics, 2009, 41, 790-798.	2.0	369
12	lonic Liquids:Â First Direct Determination of their Cohesive Energy. Journal of the American Chemical Society, 2007, 129, 284-285.	13.7	295
13	Volatility of Aprotic Ionic Liquids — A Review. Journal of Chemical & Data, 2010, 55, 3-12.	1.9	294
14	Molecular Force Field for Ionic Liquids IV:  Trialkylimidazolium and Alkoxycarbonyl-Imidazolium Cations; Alkylsulfonate and Alkylsulfate Anions. Journal of Physical Chemistry B, 2008, 112, 5039-5046.	2.6	286
15	CL&P: A generic and systematic force field for ionic liquids modeling. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	281
16	Deviations from Ideality in Mixtures of Two Ionic Liquids Containing a Common Ion. Journal of Physical Chemistry B, 2005, 109, 3519-3525.	2.6	246
17	Structure and Aggregation in the 1-Alkyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid Homologous Series. Journal of Physical Chemistry B, 2014, 118, 567-576.	2.6	223
18	Viscosity of (C2–C14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range. Fluid Phase Equilibria, 2011, 301, 22-32.	2.5	220

#	Article	IF	Citations
19	Accounting for the Unique, Doubly Dual Nature of Ionic Liquids from a Molecular Thermodynamic and Modeling Standpoint. Accounts of Chemical Research, 2007, 40, 1114-1121.	15.6	213
20	High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chemistry, 2010, 12, 1715.	9.0	213
21	The Nature of Ionic Liquids in the Gas Phase. Journal of Physical Chemistry A, 2007, 111, 6176-6182.	2.5	201
22	High-Accuracy Vapor Pressure Data of the Extended [C _{<i>n</i>} C ₁ im][Ntf ₂] Ionic Liquid Series: Trend Changes and Structural Shifts. Journal of Physical Chemistry B, 2011, 115, 10919-10926.	2.6	199
23	Systematic Study of the Thermophysical Properties of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions. Journal of Physical Chemistry B, 2013, 117, 10271-10283.	2.6	195
24	Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilibria, 2010, 294, 157-179.	2.5	171
25	On the Self-Aggregation and Fluorescence Quenching Aptitude of Surfactant Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 8645-8650.	2.6	168
26	Three commentaries on the nano-segregated structure of ionic liquids. Computational and Theoretical Chemistry, 2010, 946, 70-76.	1.5	156
27	The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chemistry, 2015, 17, 3948-3963.	9.0	156
28	Polarity, Viscosity, and Ionic Conductivity of Liquid Mixtures Containing [C ₄ C ₁ im][Ntf ₂] and a Molecular Component. Journal of Physical Chemistry B, 2011, 115, 6088-6099.	2.6	154
29	Molecular Force Field for Ionic Liquids V: Hydroxyethylimidazolium, Dimethoxy-2- Methylimidazolium, and Fluoroalkylimidazolium Cations and Bis(Fluorosulfonyl)Amide, Perfluoroalkanesulfonylamide, and Fluoroalkylfluorophosphate Anions. Journal of Physical Chemistry B, 2010, 114, 3592-3600.	2.6	146
30	High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids. Fluid Phase Equilibria, 2010, 294, 131-138.	2.5	145
31	The Structure of Aqueous Solutions of a Hydrophilic Ionic Liquid: The Full Concentration Range of 1-Ethyl-3-methylimidazolium Ethylsulfate and Water. Journal of Physical Chemistry B, 2011, 115, 2067-2074.	2.6	142
32	Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Composites Science and Technology, 2014, 90, 16-24.	7.8	134
33	A Tale of Two lons:  The Conformational Landscapes of Bis(trifluoromethanesulfonyl)amide and <i>N</i> , <i>N</i> , 12, 1465-1472.	2.6	128
34	lonic liquid-based aqueous biphasic system for lipase extraction. Green Chemistry, 2011, 13, 390-396.	9.0	120
35	Nano-segregation in ionic liquids: scorpions and vanishing chains. Physical Chemistry Chemical Physics, 2013, 15, 16256.	2.8	119
36	Structural and Positional Isomerism Influence in the Physical Properties of Pyridinium NTf ₂ -Based Ionic Liquids: Pure and Water-Saturated Mixtures. Journal of Chemical & Engineering Data, 2010, 55, 4514-4520.	1.9	118

#	Article	IF	Citations
37	Densities and Viscosities of Mixtures of Two Ionic Liquids Containing a Common Cation. Journal of Chemical & Chemic	1.9	117
38	New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [CnH2n+1mim][CmH2m+1SO3]: mesomorphism and aggregation. Physical Chemistry Chemical Physics, 2009, 11, 4260.	2.8	111
39	Multiresolution calculation of ionic liquids. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 202-214.	14.6	108
40	Transferable, Polarizable Force Field for Ionic Liquids. Journal of Chemical Theory and Computation, 2019, 15, 5858-5871.	5.3	108
41	Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2â^C8n-Alcohol} Mixtures:  Liquidâ^Liquid Equilibrium and Excess Volumes‡. Journal of Chemical & Engineering Data, 2006, 51, 2215-2221.	1.9	104
42	Condensed phase behaviour of ionic liquid–benzene mixtures: congruent melting of a [emim][NTf2]·C6H6inclusion crystal. Chemical Communications, 2006, , 2445-2447.	4.1	100
43	On the Formation of a Third, Nanostructured Domain in Ionic Liquids. Journal of Physical Chemistry B, 2013, 117, 10826-10833.	2.6	99
44	Salting-Out Effects in Aqueous Ionic Liquid Solutions: Cloud-Point Temperature Shiftsâ€. Journal of Physical Chemistry B, 2007, 111, 4737-4741.	2.6	97
45	Interaction between the π-System of Toluene and the Imidazolium Ring of Ionic Liquids: A Combined NMR and Molecular Simulation Study. Journal of Physical Chemistry B, 2009, 113, 170-177.	2.6	97
46	Using Spectroscopic Data on Imidazolium Cation Conformations To Test a Molecular Force Field for Ionic Liquids. Journal of Physical Chemistry B, 2006, 110, 7485-7489.	2.6	94
47	Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chemical Communications, 2012, 48, 3656.	4.1	91
48	Assessing the Dispersive and Electrostatic Components of the Cohesive Energy of Ionic Liquids Using Molecular Dynamics Simulations and Molar Refraction Data. Journal of Physical Chemistry B, 2010, 114, 5831-5834.	2.6	89
49	On the Role of the Dipole and Quadrupole Moments of Aromatic Compounds in the Solvation by Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 9894-9900.	2.6	86
50	Density, Thermal Expansion and Viscosity of Choliniumâ€Derived Ionic Liquids. ChemPhysChem, 2012, 13, 1902-1909.	2.1	83
51	Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures. Journal of Physical Chemistry B, 2017, 121, 6002-6020.	2.6	82
52	Salting-out in Aqueous Solutions of Ionic Liquids and K3PO4: Aqueous Biphasic Systems and Salt Precipitation. International Journal of Molecular Sciences, 2007, 8, 736-748.	4.1	81
53	Potential Energy Landscape of Bis(fluorosulfonyl)amide. Journal of Physical Chemistry B, 2008, 112, 9449-9455.	2.6	81
54	Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 13518.	2.8	81

#	Article	IF	Citations
55	Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 22321-22335.	2.8	78
56	Binary mixtures of ionic liquids with a common ion revisited: A molecular dynamics simulation study. Journal of Molecular Liquids, 2010, 153, 52-56.	4.9	75
57	Cation Alkyl Side Chain Length and Symmetry Effects on the Surface Tension of Ionic Liquids. Langmuir, 2014, 30, 6408-6418.	3.5	75
58	Mutual Solubility of Water and Structural/Positional Isomers of <i>N</i> -Alkylpyridinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 15925-15934.	2.6	74
59	1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim][CkH2k+1SO3]: synthesis and physicochemical properties. Physical Chemistry Chemical Physics, 2009, 11, 8939.	2.8	70
60	Solubility of inorganic salts in pure ionic liquids. Journal of Chemical Thermodynamics, 2012, 55, 29-36.	2.0	70
61	Pressureâ^'Densityâ^'Temperature (<i>pâ^'</i> j\subseteqis i>j\subseteqis i>j\subseteqis i>j\subseteqis i>j\subseteqis i>j\subseteqis i>j\subseteqis i=j\subseteqis i=j\subs	1.9	69
62	Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes. Physical Chemistry Chemical Physics, 2018, 20, 2094-2103.	2.8	68
63	Dependence of the Conformational Isomerism in 1- <i>n</i> -Butyl-3-methylimidazolium Ionic Liquids on the Nature of the Halide Anion. Journal of Physical Chemistry B, 2010, 114, 11715-11724.	2.6	66
64	Structure and Aggregation in the 1,3-Dialkyl-imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid Family: 2. From Single to Double Long Alkyl Side Chains. Journal of Physical Chemistry B, 2014, 118, 6885-6895.	2.6	65
65	The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities. Physical Chemistry Chemical Physics, 2014, 16, 19952.	2.8	64
66	A thermophysical and structural characterization of ionic liquids with alkyl and perfluoroalkyl side chains. RSC Advances, 2015, 5, 65337-65350.	3.6	63
67	lonic Liquids in Polyethylene Glycol Aqueous Solutions: Salting-in and Salting-out Effects. Monatshefte Fýr Chemie, 2007, 138, 1153-1157.	1.8	62
68	Raman Spectroscopic Study, DFT Calculations and MD Simulations on the Conformational Isomerism of $\langle i \rangle N \langle i \rangle$ -Alkyl- $\langle i \rangle N \langle i \rangle$ -methylpyrrolidinium Bis-(trifluoromethanesulfonyl) Amide Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 4338-4346.	2.6	56
69	2D or not 2D: Structural and charge ordering at the solid-liquid interface of the 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. Faraday Discussions, 2012, 154, 155-169.	3.2	56
70	Molecular Dynamics Simulations of Charged Dendrimers:  Low-to-Intermediate Half-Generation PAMAMs. Journal of Physical Chemistry B, 2007, 111, 10651-10664.	2.6	54
71	Impact of Self-Aggregation on the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2012, 116, 7660-7668.	2.6	54
72	Thermodynamics and Micro Heterogeneity of Ionic Liquids. Topics in Current Chemistry, 2009, 290, 161-183.	4.0	53

#	Article	IF	CITATIONS
73	What Farâ€Infrared Spectra Can Contribute to the Development of Force Fields for Ionic Liquids Used in Molecular Dynamics Simulations. ChemPhysChem, 2009, 10, 1181-1186.	2.1	51
74	Nanostructure of Trialkylmethylammonium Bistriflamide Ionic Liquids Studied by Molecular Dynamics. Journal of Physical Chemistry B, 2010, 114, 15635-15641.	2.6	50
75	Bulk nanostructure of the prototypical â€~good' and â€~poor' solvate ionic liquids [Li(G4)][TFSI] and [Li(G4)][NO ₃]. Physical Chemistry Chemical Physics, 2016, 18, 17224-17236.	2.8	49
76	lonic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model. Physical Chemistry Chemical Physics, 2017, 19, 29617-29624.	2.8	49
77	Interactions of Fluorinated Gases with Ionic Liquids: Solubility of CF ₄ , C ₂ F ₆ , and C ₃ F ₈ in Trihexyltetradecylphosphonium Bis(trifluoromethylsulfonyl)amide. Journal of Physical Chemistry B, 2008, 112, 12394-12400.	2.6	47
78	Complex Structure of Ionic Liquids. Molecular Dynamics Studies with Different Cation–Anion Combinations. Journal of Chemical & Data, 2014, 59, 3120-3129.	1.9	47
79	Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 5415-5427.	3.1	46
80	A Molecular Dynamics Study of the Thermodynamic Properties of Calcium Apatites. 1. Hexagonal Phases. Journal of Physical Chemistry B, 2005, 109, 24473-24479.	2.6	44
81	Solubility of alkanes, alkanols and their fluorinated counterparts in tetraalkylphosphonium ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 9685.	2.8	44
82	Li ⁺ Local Structure in Li–Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the ^{6/7} Li Isotopic Substitution Technique. Journal of Physical Chemistry Letters, 2016, 7, 2832-2837.	4.6	44
83	Exploring the bulk-phase structure of ionic liquid mixtures using small-angle neutron scattering. Faraday Discussions, 2018, 206, 265-289.	3.2	42
84	Experimental and Molecular Dynamics Simulation Study of the Sublimation and Vaporization Energetics of Iron Metalocenes. Crystal Structures of Fe(Î- ⁵ -C ₅ H ₄ CH ₃) ₂ and		

#	Article	IF	Citations
91	Plasma membrane permeabilisation by ionic liquids: a matter of charge. Green Chemistry, 2015, 17, 4587-4598.	9.0	37
92	Additive polarizabilities in ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 1665-1670.	2.8	37
93	Characteristics of aggregation in aqueous solutions of dialkylpyrrolidinium bromides. Journal of Colloid and Interface Science, 2011, 360, 606-616.	9.4	36
94	An All-Atom Force Field for Metallocenes. Journal of Physical Chemistry A, 2006, 110, 13850-13856.	2.5	35
95	Solubility of fluorinated compounds in a range of ionic liquids. Cloud-point temperature dependence on composition and pressure. Green Chemistry, 2008, 10, 918.	9.0	35
96	Liquidâ€Crystalline Ionic Liquids as Ordered Reaction Media for the Diels–Alder Reaction. Chemistry - A European Journal, 2016, 22, 16113-16123.	3.3	35
97	Solubility isotope effects in aqueous solutions of methane. Journal of Chemical Physics, 2002, 116, 10816-10824.	3.0	34
98	Raman Spectroscopic Study of the Vapor Phase of 1-Methylimidazolium Ethanoate, a Protic Ionic Liquid. Journal of Physical Chemistry A, 2010, 114, 10834-10841.	2.5	34
99	Liquid–Liquid Equilibrium of Cholinium-Derived Bistriflimide Ionic Liquids with Water and Octanol. Journal of Physical Chemistry B, 2012, 116, 9186-9195.	2.6	34
100	The alternation effect in ionic liquid homologous series. Physical Chemistry Chemical Physics, 2014, 16, 4033-4038.	2.8	34
101	Phase Equilibria in Ionic Liquidâ "Aromatic Compound Mixtures, Including Benzene Fluorination Effects. Journal of Physical Chemistry B, 2009, 113, 7631-7636.	2.6	33
102	Partition Coefficients of Alkaloids in Biphasic Ionic-Liquid-Aqueous Systems and their Dependence on the Hofmeister Series. Separation Science and Technology, 2012, 47, 284-291.	2.5	33
103	All-Atom Force Field for Molecular Dynamics Simulations on Organotransition Metal Solids and Liquids. Application to $M(CO)$ (sub> <i>n</i> ($M\hat{A}$ = Cr, Fe, Ni, Mo, Ru, or W) Compounds. Journal of Physical Chemistry A, 2013, 117, 11107-11113.	2.5	32
104	Probing the Surface Tension of Ionic Liquids Using the Langmuir Principle. Langmuir, 2018, 34, 4408-4416.	3.5	31
105	The Nature of Protic Ionic Liquids in the Gas Phase Revisited: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Study of $1,1,3,3$ -Tetramethylguanidinium Chloride. Journal of Physical Chemistry B, 2010, $114,8905-8909$.	2.6	30
106	The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour. Physical Chemistry Chemical Physics, 2014, 16, 21340-21348.	2.8	30
107	Structural characterization of the [CnC1im][C4F9SO3] ionic liquid series: Alkyl versus perfluoroalkyl side chains. Journal of Molecular Liquids, 2017, 226, 28-34.	4.9	30
108	Phase Behavior and Thermodynamic Properties of Ionic Liquids, Ionic Liquid Mixtures, and Ionic Liquid Solutions. ACS Symposium Series, 2005, , 270-291.	0.5	29

#	Article	IF	Citations
109	Ionic liquids and reactive azeotropes: the continuity of the aprotic and protic classes. Physical Chemistry Chemical Physics, 2010, 12, 1948.	2.8	29
110	A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Composite Structures, 2012, 94, 1352-1358.	5.8	29
111	Probing the structural features of the 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquid series using Molecular Dynamics simulations. Journal of Molecular Liquids, 2015, 210, 257-263.	4.9	28
112	Bridging the Gap between Ionic Liquids and Molten Salts: Group 1 Metal Salts of the Bistriflamide Anion in the Gas Phase. Journal of Physical Chemistry B, 2009, 113, 3491-3498.	2.6	27
113	Hydrogen-Bonding and the Dissolution Mechanism of Uracil in an Acetate Ionic Liquid: New Insights from NMR Spectroscopy and Quantum Chemical Calculations. Journal of Physical Chemistry B, 2013, 117, 4109-4120.	2.6	27
114	Using ¹²⁹ Xe NMR to Probe the Structure of Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 2758-2762.	4.6	26
115	Phase Equilibria of Haloalkanes Dissolved in Ethylsulfate- or Ethylsulfonate-Based Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 7329-7337.	2.6	24
116	Liquid- or Solid-Like Behavior of [omim][BF ₄] at a Solid Interface?. Journal of Physical Chemistry Letters, 2011, 2, 1551-1555.	4.6	24
117	Unusual LCST-type behaviour found in binary mixtures of choline-based ionic liquids with ethers. RSC Advances, 2013, 3, 10262.	3.6	24
118	Molecular Dynamics Study of the Thermodynamic Properties of Calcium Apatites. 2. Monoclinic Phases. Journal of Physical Chemistry B, 2006, 110, 4387-4392.	2.6	23
119	Vaporisation of a Dicationic lonic Liquid Revisited. ChemPhysChem, 2010, 11, 3673-3677.	2.1	23
120	Strength and fracture of graphyne and graphdiyne nanotubes. Computational Materials Science, 2020, 171, 109233.	3.0	22
121	Solvate ionic liquids based on lithium bis(trifluoromethanesulfonyl)imide–glyme systems: coordination in MD simulations with scaled charges. Physical Chemistry Chemical Physics, 2020, 22, 525-535.	2.8	22
122	CNT-reinforced iron and titanium nanocomposites: Strength and deformation mechanisms. Composites Part B: Engineering, 2020, 187, 107836.	12.0	22
123	Phase equilibra in binary Lennard-Jones mixtures: phase diagram simulation. Molecular Physics, 1999, 96, 1649-1658.	1.7	21
124	Calculation of vapor pressure isotope effects in the rare gases and their mixtures using an integral equation theory. Journal of Chemical Physics, 2003, 118, 5028-5037.	3.0	21
125	Tension–twisting dependent kinematics of chiral CNTs. Composites Science and Technology, 2013, 74, 211-220.	7.8	21
126	Charge Templates in Aromatic Plus Ionic Liquid Systems Revisited: NMR Experiments and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118, 5772-5780.	2.6	21

#	Article	IF	Citations
127	Viscosity minima in binary mixtures of ionic liquids + molecular solvents. Physical Chemistry Chemical Physics, 2015, 17, 13480-13494.	2.8	21
128	The excess thermodynamic properties of liquid (CH4+CD4). Journal of Chemical Physics, 1994, 100, 4582-4590.	3.0	20
129	Shifts in the temperature of maximum density (TMD) of ionic liquid aqueous solutions. Physical Chemistry Chemical Physics, 2013, 15, 10960.	2.8	20
130	High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. Physical Chemistry Chemical Physics, 2013, 15, 18138.	2.8	20
131	Induced anisotropy of chiral carbon nanotubes under combined tension-twisting. Mechanics of Materials, 2013, 58, 97-109.	3.2	20
132	Nanoscale organization in the fluorinated room temperature ionic liquid: Tetraethyl ammonium (trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide. Journal of Chemical Physics, 2018, 148, 193816.	3.0	19
133	Molecular dynamics studies on the structure and interactions of ionic liquids containing amino-acid anions. Physical Chemistry Chemical Physics, 2018, 20, 23864-23872.	2.8	19
134	lonic Liquids and Water: Hydrophobicity vs. Hydrophilicity. Molecules, 2021, 26, 7159.	3.8	19
135	Energetics of Aqueous Solutions of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate. Journal of Physical Chemistry B, 2010, 114, 13179-13188.	2.6	18
136	Experimental and Molecular Dynamics Simulation Study of the Sublimation Energetics of Cyclopentadienyltricarbonylmanganese (Cymantrene). Journal of Physical Chemistry A, 2008, 112, 10429-10434.	2.5	17
137	Interaction diagrams for carbon nanotubes under combined shortening–twisting. Composites Science and Technology, 2011, 71, 1811-1818.	7.8	17
138	Solvation of alcohols in ionic liquids $\hat{a} \in \text{``understanding the effect of the anion and cation. Physical Chemistry Chemical Physics, 2018, 20, 2536-2548.}$	2.8	17
139	Design of task-specific fluorinated ionic liquids: nanosegregation <i>versus</i> hydrogen-bonding ability in aqueous solutions. Chemical Communications, 2018, 54, 3524-3527.	4.1	17
140	Designing the ammonium cation to achieve a higher hydrophilicity of bistriflimide-based ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 19307-19313.	2.8	17
141	Modeling Ionic Liquids of the 1-Alkyl-3-methylimidazolium Family Using an All-Atom Force Field. ACS Symposium Series, 2005, , 134-149.	0.5	16
142	Wetting Films of Two Ionic Liquids: [C ₈ mim][BF4] and [C ₂ OHmim][BF ₄]. Journal of Physical Chemistry C, 2011, 115, 16116-16123.	3.1	16
143	Probing the self-aggregation of ionic liquids in aqueous solutions using density and speed of sound data. Journal of Chemical Thermodynamics, 2013, 59, 43-48.	2.0	16
144	From lime to silica and alumina: systematic modeling of cement clinkers using a general force-field. Physical Chemistry Chemical Physics, 2015, 17, 18477-18494.	2.8	16

#	Article	IF	Citations
145	Microstructural control and hydration of novel micro-dendritic clinkers with CaO/SiO $2 = 1.4$. Cement and Concrete Research, 2015, 76, 212-221.	11.0	16
146	Mechanical behaviour of carbon nanotubes under combined twisting–bending. Mechanics Research Communications, 2016, 73, 19-24.	1.8	16
147	Comparing the structure of different ionic liquid series: Bistriflamide v. hexafluorophosphate; pure v. equimolar mixtures. Fluid Phase Equilibria, 2016, 418, 181-191.	2.5	16
148	Nicotine:Â On the Potential Role of Ionic Liquids for Its Processing and Purification. Journal of Physical Chemistry B, 2007, 111, 7934-7937.	2.6	15
149	Molecular Dynamics Simulations of Porphyrinâ^'Dendrimer Systems: Toward Modeling Electron Transfer in Solution. Journal of Physical Chemistry B, 2008, 112, 14779-14792.	2.6	15
150	New Insight into Phase Equilibria Involving Imidazolium Bistriflamide Ionic Liquids and Their Mixtures with Alcohols and Water. Journal of Physical Chemistry B, 2010, 114, 8978-8985.	2.6	15
151	Effect of alkyl chain length on the adsorption and frictional behaviour of 1-alkyl-3-methylimidazolium chloride ionic liquid surfactants on gold surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 361-366.	4.7	15
152	The complex structure of ionic liquids at an atomistic level: from "red-and-greens―to charge templates. Pure and Applied Chemistry, 2014, 86, 119-133.	1.9	15
153	Structure and dynamics of mica-confined films of [C10C1Pyrr][NTf2] ionic liquid. Journal of Chemical Physics, 2018, 148, 193808.	3.0	15
154	Molecular dynamics simulations of molten calcium hydroxyapatite. Fluid Phase Equilibria, 2006, 241, 51-58.	2.5	14
155	Polymorphism in 4′-Hydroxyacetophenone: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2012, 116, 5179-5184.	2.6	14
156	Solubility of n-butane and 2-methylpropane (isobutane) in 1-alkyl-3-methylimidazolium-based ionic liquids with linear and branched alkyl side-chains. Physical Chemistry Chemical Physics, 2015, 17, 30328-30342.	2.8	14
157	Mixtures of Pyridine and Nicotine with Pyridinium-Based Ionic Liquids. Journal of Chemical & Chemical & Engineering Data, 2011, 56, 4356-4363.	1.9	13
158	Viscosity Mixing Rules for Binary Systems Containing One Ionic Liquid. ChemPhysChem, 2013, 14, 1956-1968.	2.1	12
159	lonic Liquid Films at the Water–Air Interface: Langmuir Isotherms of Tetra-alkylphosphonium-Based Ionic Liquids. Langmuir, 2015, 31, 8371-8378.	3.5	12
160	Solvent effects on the polar network of ionic liquid solutions. Journal of Physics Condensed Matter, 2015, 27, 194116.	1.8	12
161	Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions. Physical Chemistry Chemical Physics, 2016, 18, 2756-2766.	2.8	12
162	Neat ionic liquids versus ionic liquid mixtures: a combination of experimental data and molecular simulation. Physical Chemistry Chemical Physics, 2019, 21, 23305-23309.	2.8	12

#	Article	IF	Citations
163	Vapor Pressure Assessment of Sulfolane-Based Eutectic Solvents: Experimental, PC-SAFT, and Molecular Dynamics. Journal of Physical Chemistry B, 2020, 124, 10386-10397.	2.6	12
164	Self-Organization in Ionic Liquids: From Bulk to Interfaces and Films. Journal of the Brazilian Chemical Society, $2015, \ldots$	0.6	12
165	On the pseudo-Grüneisen parameters of molecular liquids. Journal of Molecular Liquids, 1992, 54, 115-124.	4.9	11
166	Liquid Mixtures Involving Cyclic Molecules:Â Xenon + Cyclopropane. Journal of Physical Chemistry B, 1997, 101, 7135-7138.	2.6	11
167	Microphase separation in mixtures of Lennard-Jones particles. Physical Chemistry Chemical Physics, 2002, 4, 949-954.	2.8	11
168	Refraction Index and Molar Refraction in Ionic Liquid/PEG200 Solutions. Journal of Solution Chemistry, 2015, 44, 431-439.	1.2	11
169	Polycyclic aromatic hydrocarbons as model solutes for carbon nanomaterials in ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 27694-27703.	2.8	11
170	Modeling the structure and thermodynamics of ferrocenium-based ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 10200-10208.	2.8	10
171	Crystalline-like structures and multilayering in Langmuir films of ionic liquids at the air–water interface. Chemical Communications, 2016, 52, 5585-5588.	4.1	10
172	Modeling Halogen Bonds in Ionic Liquids: A Force Field for Imidazolium and Halo-Imidazolium Derivatives. Journal of Chemical Theory and Computation, 2017, 13, 6167-6176.	5.3	10
173	Vapor pressure of partially deuterated methanes (CH3D, CH2D2, and CHD3). Journal of Chemical Physics, 1997, 106, 8792-8798.	3.0	9
174	Energetics of the Thermal Dimerization of Acenaphthylene to Heptacyclene. Journal of Physical Chemistry A, 2006, 110, 2299-2307.	2.5	9
175	Novel high-resistance clinkers with 1.10 <cao 2016,="" 39-47.<="" 85,="" and="" cement="" characterization.="" concrete="" hydration="" preliminary="" production="" research,="" route="" sio2<1.25:="" td=""><td>11.0</td><td>9</td></cao>	11.0	9
176	Comparative structural analyses in four ionic liquid systems: the two low- $\langle i \rangle q \langle i \rangle$ peaks of IL structure factor functions. Molecular Simulation, 2018, 44, 478-484.	2.0	9
177	Towards the development of nanosprings from confined carbyne chains. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113831.	2.7	9
178	The Solubility of Gases in Ionic Liquids: A Chemoinformatic Predictive and Interpretable Approach. ChemPhysChem, 2021, 22, 2190-2200.	2.1	9
179	The building-up of phase diagrams. Pure and Applied Chemistry, 1999, 71, 1183-1196.	1.9	8
180	Non-ideality of an "ideal'' liquid mixture: (36Ar + 40Ar). Physical Chemistry Chemical Physics, 2000, 2, 1095-1097.	2.8	8

#	Article	IF	Citations
181	Vapor Pressure and Related Thermodynamic Properties of 36Ar. Journal of Physical Chemistry B, 2000, 104, 8735-8742.	2.6	8
182	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	3.2	8
183	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	3.2	8
184	Melted and recrystallized holey-graphene-reinforced aluminum composites: Structure, elasticity and strength. Composite Structures, 2022, 292, 115679.	5.8	8
185	On the classification and representation of ternary phase diagrams: The yin and yang of a T–x approach. Physical Chemistry Chemical Physics, 2004, 6, 2314-2319.	2.8	7
186	Tailoring amphotericin B as an ionic liquid: an upfront strategy to potentiate the biological activity of antifungal drugs. RSC Advances, 2021, 11, 14441-14452.	3.6	7
187	Vapour pressure isotope effects in liquid hydrogen chloride. Journal of Physics Condensed Matter, 1992, 4, 6691-6702.	1.8	6
188	Vapour pressure of trideuterioammonia. Journal of Chemical Thermodynamics, 1992, 24, 993-1000.	2.0	6
189	Evidence for nonideality in the fundamental liquid mixture (36Ar+40Ar). Journal of Chemical Physics, 2000, 113, 8706-8716.	3.0	6
190	Molecular dynamics simulations of monoclinic calcium apatites: A universal equation of state. Fluid Phase Equilibria, 2007, 253, 142-146.	2.5	6
191	Bio-inspired hydrophilic bistriflimide-based ionic liquids: Molecular dynamics modeling and simulations. Journal of Molecular Liquids, 2020, 301, 112402.	4.9	6
192	Tuning the miscibility of water in imide-based ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 25236-25242.	2.8	6
193	Aluminum composites reinforced by \hat{I}^3 -graphynes: The effect of nanofillers porosity and shape on crystal growth and composite strengthening. Computational Materials Science, 2020, 176, 109538.	3.0	6
194	Graphdiyne nanotubes in ionic liquids: Characterization of interfacial interactions by molecular dynamics. Journal of Molecular Liquids, 2021, 342, 116966.	4.9	6
195	Thermodynamics of binary liquid mixtures of partially deuterated methanes with CH4 or CD4. Journal of Chemical Physics, 1997, 106, 8799-8805.	3.0	5
196	A force field for MD simulations on rhenium organometallic compounds developed from enthalpy of sublimation and X-ray diffraction measurements. Journal of Chemical Thermodynamics, 2019, 133, 60-69.	2.0	5
197	lonic Liquids in Wonderland: From Electrostatics to Coordination Chemistry. Journal of Physical Chemistry C, 2019, 123, 5804-5811.	3.1	5
198	Adsorption and viscoelastic behaviour of ionic liquid surfactants on gold surfaces. Journal of Molecular Liquids, 2019, 282, 633-641.	4.9	5

#	Article	IF	CITATIONS
199	Water Solubility Trends in Ionic Liquids: The Quantitative Structure–Property Relationship Model versus Molecular Dynamics. Journal of Physical Chemistry B, 2021, 125, 11491-11497.	2.6	5
200	Vapour pressure of liquid deuterium sulphide. Journal of Chemical Thermodynamics, 1996, 28, 1395-1401.	2.0	4
201	Analysis of structural properties in isotopic mixtures: molecular dynamics methods and Kirkwood–Buff integrals. Journal of Molecular Liquids, 2004, 112, 147-152.	4.9	4
202	ILs through the looking glass: electrostatics and structure probed using charge-inverted ionic liquid pairs. Faraday Discussions, 2018, 206, 203-218.	3.2	4
203	C13 – a new empirical force field to characterize the mechanical behavior of carbyne chains. Physical Chemistry Chemical Physics, 2020, 22, 758-771.	2.8	4
204	Phase equilibra in binary Lennard-Jones mixtures: phase diagram simulation. Molecular Physics, 1999, 96, 1649-1658.	1.7	4
205	Thermodynamics of liquid propane + cyclopropane. Fluid Phase Equilibria, 1997, 135, 249-257.	2.5	3
206	The vapour pressure of liquid cyclopropane. Journal of Chemical Thermodynamics, 1997, 29, 1435-1438.	2.0	3
207	Three-phase osmotic equilibria using the Gibbs ensemble simulation method. Molecular Physics, 2000, 98, 769-772.	1.7	3
208	Deviations from ideal behavior in isotopic mixtures of ammonia. Journal of Chemical Physics, 2001, 115, 5546-5553.	3.0	3
209	Rationalizing the Diverse Solidâ^'Liquid Equilibria of Binary Mixtures of Benzene and Its Fluorinated Derivatives. Journal of Physical Chemistry B, 2010, 114, 12589-12596.	2.6	3
210	Hollow calcite rhombohedra at ionic liquid-stabilized bubbles. CrystEngComm, 2012, 14, 5723.	2.6	3
211	Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects. Molecules, 2013, 18, 3703-3711.	3.8	3
212	ABS Composed of Ionic Liquids and Inorganic Salts. Green Chemistry and Sustainable Technology, 2016, , 27-35.	0.7	3
213	Evidences for a Null Molar Volume Contribution by Hydroxyl Groups in Ammonium Bistriflimide-Based lonic Liquids. Journal of Chemical & Engineering Data, 2019, 64, 4932-4945.	1.9	3
214	Photon Upconversion in TTA-Inducing Ionic Liquids: Pinpointing the Role of IL Nanostructured Media Using MD Simulations. Journal of Physical Chemistry B, 2020, 124, 3137-3144.	2.6	3
215	Isotopic krypton mixtures revisited: Vapor pressure isotope effects. Journal of Chemical Physics, 2002, 117, 8836-8841.	3.0	2
216	Inter-laminar shear stress in hybrid CFRP/austenitic steel. Frattura Ed Integrita Strutturale, 2015, 9, 67-79.	0.9	2

#	Article	IF	Citations
217	Negative Pressure Regimes in Ionic Liquids: Structure and Interactions in Stretched Liquids as Probed by NMR. ECS Transactions, 2018, 86, 141-147.	0.5	1
218	Molecular dynamics simulations of effective interactions among clinker minerals in aqueous solution and the structure and dynamics of the interstitial water. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	1
219	The building-up of phase diagrams. Pure and Applied Chemistry, 1999, 71, 1183-1196.	1.9	1
220	Three-phase osmotic equilibria using the Gibbs ensemble simulation method. Molecular Physics, 2000, 98, 769-772.	1.7	1
221	Phase Behavior and Thermodynamic Properties of Ionic Liquids, Ionic Liquid Mixtures, and Ionic Liquid Solutions. ChemInform, 2006, 37, no.	0.0	0
222	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	3.2	0
223	Atomistic Simulations of Carbon Nanotubes: Stiffness, Strength, and Toughness of Locally Buckled CNTs., 2018,, 259-290.		0
224	Influence of Bond Kinematics on the Rupture of Non-Chiral CNTs under Stretching–Twisting. Springer Series in Materials Science, 2014, , 275-302.	0.6	0
225	Negative Pressure Regimes in Ionic Liquids: Structure and Interactions in Stretched Liquids as Probed by NMR. ECS Meeting Abstracts, 2018, , .	0.0	0