
Marcia Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4542173/publications.pdf Version: 2024-02-01

MARCIA RODRICHES

#	Article	IF	CITATIONS
1	The impact of cryopreservation in signature markers and immunomodulatory profile of tendon and ligament derived cells. Journal of Cellular Physiology, 2022, 237, 675-686.	2.0	3
2	Controlling the fate of regenerative cells with engineered platelet-derived extracellular vesicles. Nanoscale, 2022, 14, 6543-6556.	2.8	6
3	Magnetic triggers in biomedical applications – prospects for contact free cell sensing and guidance. Journal of Materials Chemistry B, 2021, 9, 1259-1271.	2.9	7
4	Multiscale Multifactorial Approaches for Engineering Tendon Substitutes. Reference Series in Biomedical Engineering, 2021, , 507-530.	0.1	0
5	Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS Applied Bio Materials, 2021, 4, 6023-6035.	2.3	2
6	Human tendon-derived cell sheets created by magnetic force-based tissue engineering hold tenogenic and immunomodulatory potential. Acta Biomaterialia, 2021, 131, 236-247.	4.1	14
7	Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues. , 2020, , 73-105.		1
8	Pulsed Electromagnetic Field Modulates Tendon Cells Response in ILâ€1βâ€Conditioned Environment. Journal of Orthopaedic Research, 2020, 38, 160-172.	1.2	13
9	Magnetic responsive materials modulate the inflammatory profile of IL-1Î ² conditioned tendon cells. Acta Biomaterialia, 2020, 117, 235-245.	4.1	24
10	Multiscale Multifactorial Approaches for Engineering Tendon Substitutes. , 2020, , 1-24.		0
11	Magnetic Stimulation Drives Macrophage Polarization in Cell to–Cell Communication with IL-1β Primed Tendon Cells. International Journal of Molecular Sciences, 2020, 21, 5441.	1.8	20
12	Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomaterialia, 2020, 113, 488-500.	4.1	12
13	Evaluation of tenogenic differentiation potential of selected subpopulations of human adiposeâ€derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2204-2217.	1.3	10
14	Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomaterialia, 2019, 99, 236-246.	4.1	72
15	Future Directions: What the Future Holds for TERM. , 2019, , 1-1.		0
16	Triggering the activation of Activin A type II receptor in human adipose stem cells towards tenogenic commitment using mechanomagnetic stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1149-1159.	1.7	34
17	Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2375-2385.	1.7	65
18	Human adipose tissueâ€derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 762-774.	1.3	35

Marcia Rodrigues

#	Article	IF	CITATIONS
19	Tendon explant cultures to study the communication between adipose stem cells and native tendon niche. Journal of Cellular Biochemistry, 2018, 119, 3653-3662.	1.2	21
20	Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Materials Science and Engineering C, 2018, 93, 1090-1103.	3.8	23
21	Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomedical Materials (Bristol), 2018, 13, 054001.	1.7	24
22	Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800124.	3.9	34
23	Exploring Stem Cells and Inflammation in Tendon Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1089, 37-46.	0.8	20
24	Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. Journal of Materials Science: Materials in Medicine, 2018, 29, 88.	1.7	42
25	Strontium-Doped Bioactive Class Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Interfaces, 2018, 10, 23311-23320.	4.0	55
26	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	1.6	15
27	Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering - Part B: Reviews, 2017, 23, 211-224.	2.5	133
28	Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomaterialia, 2017, 63, 110-122.	4.1	67
29	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	2.6	45
30	Biomaterials as Tendon and Ligament Substitutes: Current Developments. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 349-371.	0.7	13
31	Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells. Polymers, 2016, 8, 28.	2.0	33
32	Bioengineered Strategies for Tendon Regeneration. , 2016, , 275-293.		1
33	Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Advanced Healthcare Materials, 2016, 5, 213-222.	3.9	50
34	<i>In vitro</i> and <i>in vivo</i> assessment of magnetically actuated biomaterials and prospects in tendon healing. Nanomedicine, 2016, 11, 1107-1122.	1.7	20
35	Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. Expert Review of Precision Medicine and Drug Development, 2016, 1, 93-108.	0.4	43
36	Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues. , 2015, , 259-280.		5

#	Article	IF	CITATIONS
37	The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs). Journal of Magnetism and Magnetic Materials, 2015, 393, 526-536.	1.0	23
38	2015 4thTERMIS World CongressBoston, MassachusettsSeptember 8–11, 2015. Tissue Engineering - Part A, 2015, 21, S-1-S-413.	1.6	2
39	Biomaterials in Preclinical Approaches for Engineering Skeletal Tissues. , 2015, , 127-139.		3
40	Tendon Stem Cell Niche. Pancreatic Islet Biology, 2015, , 221-244.	0.1	7
41	Cell-Based Approaches for Tendon Regeneration. , 2015, , 187-203.		9
42	Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta Biomaterialia, 2014, 10, 4175-4185.	4.1	16
43	Engineering tendon and ligament tissues: present developments towards successful clinical products. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 673-686.	1.3	132
44	Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Review of Molecular Diagnostics, 2013, 13, 553-566.	1.5	30
45	Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 2013, 9, 875-885.	1.2	33
46	Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS ONE, 2013, 8, e83734.	1.1	90
47	Amniotic Fluid-Derived Stem Cells as a Cell Source for Bone Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 2518-2527.	1.6	39
48	Bilayered constructs aimed at osteochondral strategies: The influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomaterialia, 2012, 8, 2795-2806.	4.1	53
49	Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e24-e30.	1.3	17
50	The effect of differentiation stage of amniotic fluid stem cells on bone regeneration. Biomaterials, 2012, 33, 6069-6078.	5.7	42
51	Current strategies for osteochondral regeneration: from stem cells to pre-clinical approaches. Current Opinion in Biotechnology, 2011, 22, 726-733.	3.3	53
52	Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 41-49.	1.3	38
53	In situ functionalization of wet-spun fibre meshes for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 104-111.	1.3	40
54	Effect of flow perfusion conditions in the chondrogenic differentiation of bone marrow stromal cells cultured onto starch based biodegradable scaffolds. Acta Biomaterialia, 2011, 7, 1644-1652.	4.1	42

#	Article	IF	CITATIONS
55	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	2.1	150
56	A new route to produce starchâ€based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 369-377.	2.1	58
57	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	2.1	73
58	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	2.6	240
59	Starch-polycaprolactone based scaffolds in bone and cartilage tissue engineering approaches. , 2008, , 337-356.		0
60	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	5.7	411