Pasquale Sacco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4542148/publications.pdf

Version: 2024-02-01

394421 454955 41 950 19 30 citations h-index g-index papers 41 41 41 1176 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Concepts for Developing Physical Gels of Chitosan and of Chitosan Derivatives. Gels, 2018, 4, 67.	4.5	85
2	Polysaccharide-Based Networks from Homogeneous Chitosan-Tripolyphosphate Hydrogels: Synthesis and Characterization. Biomacromolecules, 2014, 15, 3396-3405.	5.4	73
3	Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. International Journal of Biological Macromolecules, 2016, 92, 476-483.	7.5	56
4	Phyto-liposomes as nanoshuttles for water-insoluble silybin–phospholipid complex. International Journal of Pharmaceutics, 2014, 471, 173-181.	5.2	50
5	Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. Journal of Materials Science: Materials in Medicine, 2015, 26, 128.	3.6	43
6	Chitosan Acetylation Degree Influences the Physical Properties of Polysaccharide Nanoparticles: Implication for the Innate Immune Cells Response. ACS Applied Materials & Interfaces, 2019, 11, 9794-9803.	8.0	43
7	The role played by the molecular weight and acetylation degree in modulating the stiffness and elasticity of chitosan gels. Carbohydrate Polymers, 2018, 196, 405-413.	10.2	39
8	Ionotropic Gelation of Chitosan Flat Structures and Potential Applications. Molecules, 2021, 26, 660.	3.8	39
9	Complex Coacervates between a Lactose-Modified Chitosan and Hyaluronic Acid as Radical-Scavenging Drug Carriers. Biomacromolecules, 2018, 19, 3936-3944.	5.4	37
10	Butyrateâ€Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils. Macromolecular Bioscience, 2017, 17, 1700214.	4.1	35
11	Lactose-Modified Chitosan Gold(III)-PEGylated Complex-Bioconjugates: From Synthesis to Interaction with Targeted Galectin-1 Protein. Bioconjugate Chemistry, 2018, 29, 3352-3361.	3.6	29
12	On the Correlation between the Microscopic Structure and Properties of Phosphate-Cross-Linked Chitosan Gels. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10761-10770.	8.0	28
13	Substrate Dissipation Energy Regulates Cell Adhesion and Spreading. Advanced Functional Materials, 2020, 30, 2001977.	14.9	27
14	Phytoliposome-Based Silibinin Delivery System as a Promising Strategy to Prevent Hepatitis C Virus Infection. Journal of Biomedical Nanotechnology, 2016, 12, 770-780.	1.1	26
15	Glycosylated-Chitosan Derivatives: A Systematic Review. Molecules, 2020, 25, 1534.	3.8	26
16	Highly monodisperse colloidal coacervates based on a bioactive lactose-modified chitosan: From synthesis to characterization. Carbohydrate Polymers, 2017, 174, 360-368.	10.2	23
17	Protective action of lemongrass essential oil on mucilage from chia (Salvia hispanica) seeds. Food Hydrocolloids, 2020, 105, 105860.	10.7	23
18	Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac). Biomacromolecules, 2017, 18, 4206-4213.	5.4	21

#	Article	IF	Citations
19	Mimicking mechanical response of natural tissues. Strain hardening induced by transient reticulation in lactose-modified chitosan (chitlac). International Journal of Biological Macromolecules, 2018, 106, 656-660.	7. 5	21
20	Long lasting mucoadhesive membrane based on alginate and chitosan for intravaginal drug delivery. Journal of Materials Science: Materials in Medicine, 2020, 31, 25.	3.6	21
21	pH-Assisted Gelation of Lactose-Modified Chitosan. Biomacromolecules, 2019, 20, 3070-3075.	5.4	20
22	N-isopropyl chitosan. A pH- and thermo-responsive polysaccharide for gel formation. Carbohydrate Polymers, 2020, 230, 115641.	10.2	19
23	On the Mechanism of Genipin Binding to Primary Amines in Lactose-Modified Chitosan at Neutral pH. International Journal of Molecular Sciences, 2020, 21, 6831.	4.1	18
24	Nucleation, reorganization and disassembly of an active network from lactose-modified chitosan mimicking biological matrices. Carbohydrate Polymers, 2019, 208, 451-456.	10.2	17
25	A silver complex of hyaluronan–lipoate (SHLS12): Synthesis, characterization and biological properties. Carbohydrate Polymers, 2016, 136, 418-426.	10.2	16
26	Structural characterization and physical ageing of mucilage from chia for food processing applications. Food Hydrocolloids, 2022, 129, 107614.	10.7	13
27	Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110588.	5.0	12
28	Biomimetic, Multiresponsive, and Self-Healing Lactose-Modified Chitosan (CTL)-Based Gels Formed via Competitor-Assisted Mechanism. ACS Biomaterials Science and Engineering, 2019, 5, 5539-5547.	5.2	11
29	Strain Hardening in Highly Acetylated Chitosan Gels. Biomacromolecules, 2021, 22, 2902-2909.	5.4	11
30	Single-shot K-edge subtraction x-ray discrete computed tomography with a polychromatic source and the Pixie-III detector. Physics in Medicine and Biology, 2020, 65, 055016.	3.0	10
31	Temporary/Permanent Dual Crossâ€Link Gels Formed of a Bioactive Lactoseâ€Modified Chitosan. Macromolecular Bioscience, 2020, 20, e2000236.	4.1	8
32	Insights into Mechanical Behavior and Biological Properties of Chia Seed Mucilage Hydrogels. Gels, 2021, 7, 47.	4.5	8
33	Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition. Colloids and Interfaces, 2020, 4, 12.	2.1	7
34	Progress in Colloid Delivery Systems for Protection and Delivery of Phenolic Bioactive Compounds: Two Study Casesâ€"Hydroxytyrosol and Curcumin. Molecules, 2022, 27, 921.	3.8	7
35	Regulation of Substrate Dissipation via Tunable Linear Elasticity Controls Cell Activity. Advanced Functional Materials, 2022, 32, .	14.9	7
36	On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates. Molecules, 2020, 25, 1071.	3.8	6

#	Article	IF	CITATIONS
37	Sulfated lactose-modified chitosan. A novel synthetic glycosaminoglycan-like polysaccharide inducing chondrocyte aggregation. Carbohydrate Polymers, 2022, 288, 119379.	10.2	6
38	CTL–doxorubicin (DOX)–gold complex nanoparticles (DOX–AuGCs): from synthesis to enhancement of therapeutic effect on liver cancer model. Nanoscale Advances, 2020, 2, 5231-5241.	4.6	3
39	Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates. Polymers, 2020, 12, 897.	4.5	3
40	Influence of Temperature and Polymer Concentration on the Nonlinear Response of Highly Acetylated Chitosan–Genipin Hydrogels. Gels, 2022, 8, 194.	4.5	3
41	Correction to "Lactose-Modified Chitosan Gold(III)-PEGylated Complex-Bioconjugates: From Synthesis to Interaction with Targeted Galectin-1 Protein― Bioconjugate Chemistry, 2022, 33, 1439-1439.	3.6	0