Cinzia Lanzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 381.	3.5	9
2	Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochemical Pharmacology, 2020, 178, 114084.	2.0	20
3	Editorial: Heparan Sulfate Proteoglycans and Their Endogenous Modifying Enzymes: Cancer Players, Biomarkers and Therapeutic Targets. Frontiers in Oncology, 2020, 10, 195.	1.3	6
4	Heparanase: A Potential Therapeutic Target in Sarcomas. Advances in Experimental Medicine and Biology, 2020, 1221, 405-431.	0.8	3
5	Overactive IGF1/Insulin Receptors and NRASQ61R Mutation Drive Mechanisms of Resistance to Pazopanib and Define Rational Combination Strategies to Treat Synovial Sarcoma. Cancers, 2019, 11, 408.	1.7	10
6	Microenvironment modulation and enhancement of antilymphoma therapy by the heparanase inhibitor roneparstat. Hematological Oncology, 2018, 36, 360-362.	0.8	15
7	Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Letters, 2018, 415, 187-197.	3.2	24
8	Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules, 2018, 23, 2915.	1.7	46
9	Axl molecular targeting counteracts aggressiveness but not platinum-resistance of ovarian carcinoma cells. Biochemical Pharmacology, 2017, 136, 40-50.	2.0	16
10	Targeting Heparan Sulfate Proteoglycans and their Modifying Enzymes to Enhance Anticancer Chemotherapy Efficacy and Overcome Drug Resistance. Current Medicinal Chemistry, 2017, 24, 2860-2886.	1.2	42
11	Targeting ErbB3 activation in drug-resistant ovarian carcinoma cells over-expressing the receptor tyrosine kinase Axl. European Journal of Cancer, 2016, 69, S71-S72.	1.3	0
12	Synthetic sulfoglycolipids targeting the serine–threonine protein kinase Akt. Bioorganic and Medicinal Chemistry, 2016, 24, 3396-3405.	1.4	9
13	The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Letters, 2016, 382, 245-254.	3.2	25
14	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
15	Targeting of <i>RET</i> oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer. Oncotarget, 2016, 7, 49649-49663.	0.8	22
16	Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget, 2016, 7, 47848-47863.	0.8	43
17	Role of the Receptor Tyrosine Kinase Axl and its Targeting in Cancer Cells. Current Medicinal Chemistry, 2016, 23, 1496-1512.	1.2	31
18	Abstract 3289: Microenvironment modulation and enhancement of cytotoxic therapy by the		0

heparanase inhibitor Roneparstat against human B-non Hodgkin lymphomas. , 2016, , .

CINZIA LANZI

#	Article	IF	CITATIONS
19	New mechanisms for old drugs: Insights into DNA-unrelated effects of platinum compounds and drug resistance determinants. Drug Resistance Updates, 2015, 20, 1-11.	6.5	47
20	Targeting the invasive phenotype of cisplatin-resistant Non-Small Cell Lung Cancer cells by a novel histone deacetylase inhibitor. Biochemical Pharmacology, 2015, 94, 79-90.	2.0	22
21	PLK1 is a critical determinant of tumor cell sensitivity to CPT11 and its inhibition enhances the drug antitumor efficacy in squamous cell carcinoma models sensitive and resistant to camptothecins. Oncotarget, 2015, 6, 8736-8749.	0.8	17
22	Synergistic Cooperation Between Sunitinib and Cisplatin Promotes Apoptotic Cell Death in Human Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 498-509.	1.8	23
23	Stratification of clear cell renal cell carcinoma by signaling pathway analysis. Expert Review of Proteomics, 2014, 11, 237-249.	1.3	9
24	141: RET/PTC1 in vitro models unveil a novel tumor suppressor miRNA in papillary thyroid carcinoma. European Journal of Cancer, 2014, 50, S31.	1.3	0
25	Differential outcome of MEK1/2 inhibitor-platinum combinations in platinum-sensitive and -resistant ovarian carcinoma cells. Cancer Letters, 2014, 347, 212-224.	3.2	26
26	miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget, 2014, 5, 2513-2528.	0.8	98
27	Medullary Thyroid Cancer Targeted Therapy. , 2014, , 1-4.		Ο
28	Medullary Thyroid Cancer Targeted Therapy. , 2014, , 2699-2702.		0
29	Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochemical Pharmacology, 2013, 85, 1424-1432.	2.0	75
30	DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells. Endocrine-Related Cancer, 2013, 20, 23-37.	1.6	41
31	Modulation of Sensitivity to Antitumor Agents by Targeting the MAPK Survival Pathway. Current Pharmaceutical Design, 2013, 19, 883-894.	0.9	47
32	Targeting the Akt Kinase to Modulate Survival, Invasiveness and Drug Resistance of Cancer Cells. Current Medicinal Chemistry, 2013, 20, 1923-1945.	1.2	86
33	Abstract A93: Targeting the increased invasive capability of non-small cell lung cancer platinum-resistant cells by histone deacetylase inhibitors , 2013, , .		Ο
34	Abstract A64: Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in human medullary thyroid cancer , 2013, , .		0
35	The curative efficacy of namitecan (ST1968) in preclinical models of pediatric sarcoma is associated with antiangiogenic effects. Biochemical Pharmacology, 2012, 84, 163-171.	2.0	29
36	Modulation of Sensitivity to Antitumor Agents by Targeting the MAPK Survival Pathway. Current Pharmaceutical Design, 2012, 19, 883-894.	0.9	23

Cinzia Lanzi

#	Article	IF	CITATIONS
37	Signaling pathway-based stratification of clear cell renal cell carcinoma Journal of Clinical Oncology, 2012, 30, 434-434.	0.8	0
38	Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX4032. Neoplasia, 2011, 13, 1132-IN17.	2.3	89
39	Pre-clinical and clinical significance of heparanase in Ewing's sarcoma. Journal of Cellular and Molecular Medicine, 2011, 15, 1857-1864.	1.6	53
40	Interplay between Ret and Fap-1 regulates CD95-mediated apoptosis in medullary thyroid cancer cells. Biochemical Pharmacology, 2011, 82, 778-788.	2.0	13
41	Abstract C206: High antitumor complete response rate to Namitecan (ST1968) in preclinical model of pediatric sarcomas , 2011, , .		0
42	Targeting RET for thyroid cancer therapy. Biochemical Pharmacology, 2009, 77, 297-309.	2.0	62
43	Concomitant downregulation of proliferation/survival pathways dependent on FGF-R3, JAK2 and BCMA in human multiple myeloma cells by multi-kinase targeting. Biochemical Pharmacology, 2009, 78, 1139-1147.	2.0	9
44	Proteomics study of medullary thyroid carcinomas expressing RET germâ€line mutations: Identification of new signaling elements. Molecular Carcinogenesis, 2009, 48, 220-231.	1.3	26
45	RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation. Neoplasia, 2009, 11, 10-21.	2.3	55
46	Modulation of Survival Pathways in Ovarian Carcinoma Cells Resistant to Platinum Compounds. , 2009, , 195-200.		0
47	Abstract B224: Multiâ€ŧyrosine kinase targeting resulting in concomitant downregulation of proliferation/survival pathways dependent on FGFâ€R3, Jak2 and BCMA in human multiple myeloma cells. , 2009, , .		0
48	Synthesis, Modeling, and RET Protein Kinase Inhibitory Activity of 3- and 4-Substituted β-Carbolin-1-ones. Journal of Medicinal Chemistry, 2008, 51, 7777-7787.	2.9	36
49	Modulation of survival pathways in ovarian carcinoma cell lines resistant to platinum compounds. Molecular Cancer Therapeutics, 2008, 7, 679-687.	1.9	52
50	Synthesis and RET protein kinase inhibitory activity of 3-arylureidobenzylidene-indolin-2-ones. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3962-3968.	1.0	21
51	Apoptotic cell death induction and angiogenesis inhibition in large established medullary thyroid carcinoma xenografts by Ret inhibitor RPI-1. Biochemical Pharmacology, 2006, 72, 405-414.	2.0	30
52	Inhibition of c-Met and prevention of spontaneous metastatic spreading by the 2-indolinone RPI-1. Molecular Cancer Therapeutics, 2006, 5, 2388-2397.	1.9	42
53	Modulation of Survival Signaling Pathways and Persistence of the Genotoxic Stress as a Basis for the Synergistic Interaction between the Atypical Retinoid ST1926 and the Epidermal Growth Factor Receptor Inhibitor ZD1839. Cancer Research, 2005, 65, 2364-2372.	0.4	26
54	Development of Resistance to the Atypical Retinoid, ST1926, in the Lung Carcinoma Cell Line H460 Is Associated with Reduced Formation of DNA Strand Breaks and a Defective DNA Damage Response. Neoplasia, 2005, 7, 667-677.	2.3	27

CINZIA LANZI

#	Article	IF	CITATIONS
55	Cellular Effects and Antitumor Activity of RET Inhibitor RPI-1 on MEN2A-Associated Medullary Thyroid Carcinoma. Journal of the National Cancer Institute, 2004, 96, 1006-1014.	3.0	106
56	Induction of apoptosis and stress response in ovarian carcinoma cell lines treated with ST1926, an atypical retinoid. Cell Death and Differentiation, 2004, 11, 280-289.	5.0	54
57	Role of c-myc protein in hormone refractory prostate carcinoma: cellular response to paclitaxel. Biochemical Pharmacology, 2004, 68, 923-931.	2.0	14
58	Antitumour and antiangiogenic effects of IDN 5390, a novel C-seco taxane, in a paclitaxel-resistant human ovarian tumour xenograft. British Journal of Cancer, 2004, 90, 1464-1468.	2.9	18
59	Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1. Cellular and Molecular Life Sciences, 2003, 60, 1449-1459.	2.4	45
60	IDN 5390: an oral taxane candidate for protracted treatment schedules. British Journal of Cancer, 2003, 88, 965-972.	2.9	18
61	Antiangiogenic effects of the novel camptothecin ST1481 (gimatecan) in human tumor xenografts. Molecular Cancer Research, 2003, 1, 863-70.	1.5	35
62	Cell cycle checkpoint efficiency and cellular response to paclitaxel in prostate cancer cells. Prostate, 2001, 48, 254-264.	1.2	68
63	A role for loss of p53 function in sensitivity of ovarian carcinoma cells to taxanes. International Journal of Cancer, 2001, 92, 738-747.	2.3	61
64	Inhibition of transforming activity of the ret/ptc1 oncoprotein by a 2-indolinone derivative. International Journal of Cancer, 2000, 85, 384-390.	2.3	57
65	Structure elucidation of clavilactone D: an inhibitor of protein tyrosine kinases. Phytochemistry, 2000, 53, 1039-1041.	1.4	44
66	Clavilactones, a novel class of tyrosine kinase inhibitors of fungal origin. Biochemical Pharmacology, 2000, 59, 1539-1547.	2.0	59
67	Decreased Drug Accumulation and Increased Tolerance to DNA Damage in Tumor Cells with a Low Level of Cisplatin Resistance. Biochemical Pharmacology, 1998, 55, 1247-1254.	2.0	55
68	Lipid peroxidation, phosphoinositide turnover and protein kinase C activation in human platelets treated with anthracyclines and their complexes with Fe(III). Biochemical Pharmacology, 1992, 43, 1521-1527.	2.0	8
69	Protein kinase C activation by anthracyclines in swiss 3T3 cells. International Journal of Cancer, 1991, 47, 136-142.	2.3	12
70	Selection of monoclonal antibodies which induce internalization and phosphorylation of P185HER2 and growth inhibition of cells with HER2/neu gene amplification. International Journal of Cancer, 1991, 47, 933-937.	2.3	99
71	Protein Kinase C Activation and Lipid Peroxidation by Doxorubicin Analogues. Tumori, 1989, 75, 358-361.	0.6	4
72	Diversity of effects of two antitumor anthracycline analogs on the pathway of activation of PKC in intact human platelets. Biochemical Pharmacology, 1988, 37, 3497-3504.	2.0	9

#	Article	IF	CITATIONS
73	Role of Daunosamine and Hydroxyacetyl Side Chain in Reaction With Iron and Lipid Peroxidation by Anthracyclines. Journal of the National Cancer Institute, 1988, 80, 1104-1111.	3.0	42