Ji Zhou

List of Publications by Citations

Source: https://exaly.com/author-pdf/4540825/ji-zhou-publications-by-citations.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

210
papers

4,869
citations

h-index

5,643
ext. papers

4.6
avg, IF

62
g-index

5.73
L-index

#	Paper	IF	Citations
210	Mie resonance-based dielectric metamaterials. <i>Materials Today</i> , 2009 , 12, 60-69	21.8	581
209	Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. <i>Progress in Materials Science</i> , 2018 , 94, 114-173	42.2	334
208	Electrically tunable negative permeability metamaterials based on nematic liquid crystals. <i>Applied Physics Letters</i> , 2007 , 90, 011112	3.4	204
207	Density and Phonon-Stiffness Anomalies of Water and Ice in the Full Temperature Range. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3238-44	6.4	101
206	Isotropic Negative Thermal Expansion Metamaterials. <i>ACS Applied Materials & Description</i> 1, 17721-7	9.5	99
205	Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors. Journal of Physical Chemistry Letters, 2013 , 4, 2565-70	6.4	98
204	Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3. <i>Applied Physics Letters</i> , 2001 , 78, 661-663	3.4	90
203	Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires. <i>Applied Physics Letters</i> , 2007 , 91, 131107	3.4	88
202	Mechanically stretchable and tunable metamaterial absorber. <i>Applied Physics Letters</i> , 2015 , 106, 091907	73.4	85
201	Ferroelectric inverse opals with electrically tunable photonic band gap. <i>Applied Physics Letters</i> , 2003 , 83, 4704-4706	3.4	85
200	Geometrically Complex Silicon Carbide Structures Fabricated by Robocasting. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2660-2666	3.8	83
199	Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres. <i>Applied Physics Letters</i> , 2000 , 76, 3513-3515	3.4	77
198	Isotropic Mie resonance-based metamaterial perfect absorber. <i>Applied Physics Letters</i> , 2013 , 103, 0319 ²	1 9 .4	75
197	Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 280, 208-213	2.8	74
196	Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods. <i>Optics Express</i> , 2008 , 16, 8825-34	3.3	72
195	Tunable negative permeability in an isotropic dielectric composite. <i>Applied Physics Letters</i> , 2008 , 92, 05	13.046	70
194	Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components. <i>Journal of Magnetism and Magnetic Materials</i> , 2003 , 264, 44-49	2.8	63

(2008-2012)

193	Towards rational design of low-temperature co-fired ceramic (LTCC) materials. <i>Journal of Advanced Ceramics</i> , 2012 , 1, 89-99	10.7	58
192	Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires. <i>Optics Express</i> , 2009 , 17, 13373-80	3.3	56
191	Magnetic control of negative permeability metamaterials based on liquid crystals. <i>Applied Physics Letters</i> , 2008 , 92, 193104	3.4	52
190	Electrical properties of non-stoichiometric Y-type hexagonal ferrite. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 278, 208-213	2.8	52
189	Magnetic Properties of a Novel Ceramic Ferroelectric Herromagnetic Composite. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 3440-3443	3.8	52
188	Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. <i>Applied Physics Letters</i> , 2010 , 97, 134103	3.4	51
187	Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 246, 140-144	2.8	50
186	Metamaterial perfect absorber based on artificial dielectric "atoms". <i>Optics Express</i> , 2016 , 24, 20454-60	3.3	47
185	Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial. <i>Applied Physics Letters</i> , 2014 , 104, 131907	3.4	47
184	Preparation and Spontaneous Polarization Magnetization of a New Ceramic Ferroelectric Herromagnetic Composite. <i>Journal of the American Ceramic Society</i> , 2005 , 87, 1848-1852	3.8	46
183	Dual band metamaterial perfect absorber based on Mie resonances. <i>Applied Physics Letters</i> , 2016 , 109, 062902	3.4	46
182	Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal. <i>Chemical Physics Letters</i> , 2008 , 455, 55-58	2.5	45
181	Enhanced Visible Light Driven Photocatalytic Behavior of BiFeO/Reduced Graphene Oxide Composites. <i>Nanomaterials</i> , 2018 , 8,	5.4	44
180	Binary colloidal crystals with a wide range of size ratios via template-assisted electric-field-induced assembly. <i>Langmuir</i> , 2007 , 23, 8695-8	4	44
179	Low-temperature sintered Mg-Zn-Cu ferrite prepared by auto-combustion of nitrate-citrate gel. Journal of Materials Science Letters, 2001 , 20, 1327-1329		43
178	Dual band metamaterial perfect absorber based on artificial dielectric "molecules". <i>Scientific Reports</i> , 2016 , 6, 28906	4.9	41
177	Effect of Mn doping on physical properties of Y-type hexagonal ferrite. <i>Journal of Alloys and Compounds</i> , 2009 , 473, 505-508	5.7	40
176	Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles. <i>Materials Letters</i> , 2008 , 62, 1937-1940	3.3	40

175	Magnetic and electric coupling effects of dielectric metamaterial. New Journal of Physics, 2012, 14, 0330	3.19	39
174	Enhanced luminescence from lanthanide complex by silver nanoparticles. <i>Materials Letters</i> , 2008 , 62, 3582-3584	3.3	37
173	Photoluminescence of CdSe nanocrystallites embedded in BaTiO3 matrix. <i>Applied Physics Letters</i> , 2000 , 76, 1540-1542	3.4	37
172	Magnetically tunable Mie resonance-based dielectric metamaterials. Scientific Reports, 2014, 4, 7001	4.9	36
171	Preparation and electromagnetic properties of ferriteBordierite composites. <i>Materials Letters</i> , 2000 , 44, 279-283	3.3	36
170	Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires. <i>Optics Express</i> , 2008 , 16, 17269-75	3.3	32
169	Low-Temperature Sintering, Densification, and Properties of Z-type Hexaferrite with Bi2O3 Additives. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 2889-2894	3.8	32
168	Three-dimensional photonic band gap structure of a polymer-metal composite. <i>Applied Physics Letters</i> , 2000 , 76, 3337-3339	3.4	32
167	CaF2AlF3BiO2 glass-ceramic with low dielectric constant for LTCC application. <i>Journal of Alloys and Compounds</i> , 2010 , 490, 204-207	5.7	28
166	Investigation of magnetic properties of Ni0.2Cu0.2Zn0.6Fe1.96O4 B aTiO3 composites. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 269, 352-358	2.8	28
165	Microstructure and magnetic characteristics of low-temperature-fired modified Z-type hexaferrite with Bi/sub 2/O/sub 3/ additive. <i>IEEE Transactions on Magnetics</i> , 2002 , 38, 1797-1802	2	28
164	Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 5265-9	3.4	27
163	Electrostatic Field Invisibility Cloak. Scientific Reports, 2015, 5, 16416	4.9	26
162	Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial. <i>Physical Review B</i> , 2009 , 80,	3.3	26
161	Tunable negative refraction in nematic liquid crystals. Applied Physics Letters, 2006, 89, 221918	3.4	26
160	Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals. <i>Journal of Applied Physics</i> , 2009 , 105, 083523	2.5	25
159	Co-firing behavior of ZnTiO3IIiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 99, 262-	3 ₆ 5	25
158	Flexible NiO-Graphene-Carbon Fiber Mats Containing Multifunctional Graphene for High Stability and High Specific Capacity Lithium-Ion Storage. <i>ACS Applied Materials & Discounty Communication</i> 11507-1	9 .5	25

(2009-2015)

157	Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices. <i>Advanced Materials</i> , 2015 , 27, 6187-94	24	24
156	Photonic band gap in (Pb,La)(Zr,Ti)O3 inverse opals. <i>Applied Physics Letters</i> , 2003 , 82, 3617-3619	3.4	23
155	Toroidal Dipole Resonances in All-Dielectric Oligomer´Metasurfaces. <i>Advanced Theory and Simulations</i> , 2019 , 2, 1900123	3.5	22
154	Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing. <i>Optics Express</i> , 2017 , 25, 22038-22045	3.3	22
153	Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. <i>Science Advances</i> , 2019 , 5, eaax1782	14.3	21
152	Direct-writing construction of layered meshes from nanoparticles-vaseline composite inks: rheological properties and structures. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 102, 50	1 - 367	21
151	Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial. <i>Applied Physics Letters</i> , 2008 , 93, 201106	3.4	21
150	Template-induced directional growth of ZnO nanomeshes by colloidal crystals. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5986		21
149	Artificial Nonlinearity Generated from Electromagnetic Coupling Metamolecule. <i>Physical Review Letters</i> , 2017 , 118, 167401	7.4	20
148	Photocatalytic Performance of a Novel MOF/BiFeOlComposite. <i>Materials</i> , 2017 , 10,	3.5	20
147	Ice Regelation: Hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. <i>Scientific Reports</i> , 2015 , 5, 13655	4.9	20
146	Indefinite permittivity in uniaxial single crystal at infrared frequency. <i>Applied Physics Letters</i> , 2010 , 97, 031912	3.4	20
145	Negative and near zero refraction metamaterials based on permanent magnetic ferrites. <i>Scientific Reports</i> , 2014 , 4, 4139	4.9	19
144	Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal-Dielectric Hybrid Metamaterials. <i>Advanced Materials</i> , 2019 , 31, e1903206	24	19
143	Low-fired microwave dielectrics in ZnO-TiO2 ceramics doped with CuO and B2O3. <i>Journal of Materials Science: Materials in Electronics</i> , 2002 , 13, 415-418	2.1	19
142	Highly Efficient Active All-Dielectric Metasurfaces Based on Hybrid Structures Integrated with Phase-Change Materials: From Terahertz to Optical Ranges. <i>ACS Applied Materials & Company (Interfaces,</i> 2019, 11, 14229-14238	9.5	18
141	Photonic Bandgap and Photoluminescence in TbPO4 Inverse Opal with Coexistence of the (001) and (111) Orientations. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 1596-1598	3.8	18
140	Preparation and photonic bandgap properties of lead lanthanum titanate inverse opal photonic crystals. <i>Journal of Alloys and Compounds</i> , 2009 , 468, 295-298	5.7	18

139	Experimental verification of a tunable optical negative refraction in nematic liquid crystals. <i>Applied Physics Letters</i> , 2007 , 90, 181931	3.4	18
138	Synthesis of (Pb,La)(Zr,Ti)O3 Inverse Opal Photonic Crystals. <i>Journal of the American Ceramic</i>	3.8	18
	Society, 2003 , 86, 867-869	<i></i>	
137	The Effect of Sr Substitution on Phase Formation and Magnetic Properties of Y-type Hexagonal Ferrite. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 318-323	3.8	18
136	Low-temperature sinterable cordierite glass-ceramics for high-frequency multilayer chip inductors. Journal of Materials Science Letters, 2000 , 19, 213-215		18
135	A route for white LED package using luminescent low-temperature co-fired ceramics. <i>Journal of Alloys and Compounds</i> , 2016 , 655, 203-207	5.7	17
134	Microwave Tunable Metamaterial Based on Semiconductor-to-Metal Phase Transition. <i>Scientific Reports</i> , 2017 , 7, 5773	4.9	17
133	Microstructure and densification mechanism of low temperature sintering Bi-Substituted yttrium iron garnet. <i>Journal of Electroceramics</i> , 2008 , 21, 802-804	1.5	17
132	Intense and stable blue-light emission of Pb(ZrxTi1⊠)O3. <i>Applied Physics Letters</i> , 2001 , 79, 1082-1084	3.4	17
131	Achieving bifunctional cloak via combination of passive and active schemes. <i>Applied Physics Letters</i> , 2016 , 109, 201903	3.4	17
130	Temperature-Controlled Chameleonlike Cloak. <i>Physical Review X</i> , 2017 , 7,	9.1	15
129	Ferrite based metamaterials with thermo-tunable negative refractive index. <i>Applied Physics Letters</i> , 2013 , 103, 131915	3.4	15
128	Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite. <i>Applied Physics Letters</i> , 2008 , 93, 171909	3.4	15
127	Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance. <i>Crystals</i> ,	2.2	15
	2018 , 8, 432	2.3	
126	Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials. <i>Scientific Reports</i> , 2015 , 5, 16154	4.9	14
126	Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic		14
	Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials. <i>Scientific Reports</i> , 2015 , 5, 16154 Mie-resonance-coupled total broadband transmission through a single subwavelength aperture.	4.9	
125	Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials. <i>Scientific Reports</i> , 2015 , 5, 16154 Mie-resonance-coupled total broadband transmission through a single subwavelength aperture. <i>Applied Physics Letters</i> , 2014 , 104, 204103 Artificial Generation of High Harmonics via Nonrelativistic Thomson Scattering in Metamaterial.	4.9	14

(2008-2022)

121	A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared <i>Light: Science and Applications</i> , 2022 , 11, 91	16.7	13	
120	A Novel BiMoOIZIF-8 Composite for Enhanced Visible Light Photocatalytic Activity. <i>Nanomaterials</i> , 2019 , 9,	5.4	12	
119	Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators. <i>Scientific Reports</i> , 2015 , 5, 8144	4.9	12	
118	Microwave memristive-like nonlinearity in a dielectric metamaterial. <i>Scientific Reports</i> , 2014 , 4, 5499	4.9	12	
117	Energy Transfer Enhancement in Eu3+, Tb3+-Doped SiO2 Inverse Opal Photonic Crystals. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2731-2734	3.8	12	
116	Enhancement effect of terbium complex luminescence by binding to silver nanoparticles in the solution. <i>Optoelectronics Letters</i> , 2006 , 2, 316-319	0.7	12	
115	Dielectric behavior of Co2Z hexagonal ferrites with multiple modifications. <i>Journal of Applied Physics</i> , 2002 , 91, 5230-5233	2.5	12	
114	Low-fired Y-type hexagonal ferrite for hyper frequency applications. <i>Journal of Advanced Ceramics</i> , 2012 , 1, 100-109	10.7	11	
113	The static and hyper-frequency magnetic properties of a ferromagnetic Berroelectric composite. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 148-151	2.8	11	
112	Preparation and photonic bandgap properties of Na1/2Bi1/2TiO3 inverse opal photonic crystals. <i>Journal of Alloys and Compounds</i> , 2009 , 471, 241-243	5.7	11	
111	The effect of Bi substitution on phase formation and low temperature sintering of Y-type hexagonal ferrite. <i>Journal of Electroceramics</i> , 2008 , 21, 349-352	1.5	11	
110	Tunable dielectric metamaterial based on strontium titanate artificial atoms. <i>Scripta Materialia</i> , 2020 , 184, 30-33	5.6	10	
109	Abnormal refraction of microwave in ferrite/wire metamaterials. <i>Optics Express</i> , 2011 , 19, 15679-89	3.3	10	
108	Low-Temperature Sintering and Electromagnetic Properties of Copper-Modified Z-type Hexaferrite. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 1180-1184	3.8	10	
107	Causes for the Formation of Titania Nanotubes During Anodization. <i>IEEE Nanotechnology Magazine</i> , 2015 , 14, 113-117	2.6	9	
106	A metasurface absorber based on the slow-wave effect. AIP Advances, 2020, 10, 045311	1.5	9	
105	ARTIFICIAL MAGNETIC PROPERTIES OF DIELECTRIC METAMATERIALS IN TERMS OF EFFECTIVE CIRCUIT MODEL. <i>Progress in Electromagnetics Research</i> , 2011 , 116, 159-170	3.8	9	
104	Promising Red Phosphors(Ca , Eu , M)(WO4)1 [z(MoO4)z(M = Mg , Zn) for Solid-State Lighting. <i>Journal of the Electrochemical Society</i> , 2008 , 155, H525	3.9	9	

103	Left-handed material based on ferroelectric medium. <i>Optics Express</i> , 2007 , 15, 8284-9	3.3	9
102	Temperature-tuned photonic bandgap in polymer synthetic opals. <i>Journal of Materials Science</i> , 2005 , 40, 2611-2613	4.3	9
101	Asymmetric Transmission in a Mie-Based Dielectric Metamaterial with Fano Resonance. <i>Materials</i> , 2019 , 12,	3.5	8
100	Imitation of ancient black-glazed Jian bowls (Yohen Tenmoku): Fabrication and characterization. <i>Ceramics International</i> , 2016 , 42, 15269-15273	5.1	8
99	LEFT-HANDED MATERIALS BASED ON CRYSTAL LATTICE VIBRATION. <i>Progress in Electromagnetics Research Letters</i> , 2009 , 10, 145-155	0.5	8
98	Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium. <i>Science Bulletin</i> , 2008 , 53, 3272-3276	10.6	8
97	Co-firing behavior of ZnTiO3 dielectric ceramics/Ag composites for MLCCs. <i>Ceramics International</i> , 2006 , 32, 471-474	5.1	8
96	Low-temperature sintered Ni-Zn manganite NTC ceramics prepared by a gel auto-combustion method. <i>Journal of Materials Science Letters</i> , 2002 , 21, 375-377		8
95	Internal-strain-controlled tungsten bronze structural ceramics for 5G millimeter-wave metamaterials. <i>Journal of Materials Chemistry C</i> ,	7.1	8
94	Poynting vector analysis for wireless power transfer between magnetically coupled coils with different loads. <i>Scientific Reports</i> , 2017 , 7, 741	4.9	7
93	Precise identification of Dirac-like point through a finite photonic crystal square matrix. <i>Scientific Reports</i> , 2016 , 6, 36712	4.9	7
92	Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes. <i>Nano Research</i> , 2012 , 5, 595-604	10	7
91	Microstructure and Physical Characteristics of Novel Z-Type Hexaferrite with Cu Modification 2002 , 9, 73-79		7
90	Tailoring Nanohole Plasmonic Resonance with Light-Responsive Azobenzene Compound. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 2254-2263	9.5	7
89	Terahertz Polarization Conversion in an Electromagnetically Induced Transparency (EIT)-Like Metamaterial. <i>Annalen Der Physik</i> , 2021 , 533, 2000528	2.6	7
88	Magnetically tunable Fano resonance with enhanced nonreciprocity in a ferrite-dielectric metamolecule. <i>Applied Physics Letters</i> , 2018 , 112, 174103	3.4	6
87	Trapped-Mode-Induced Giant Magnetic Field Enhancement in All-Dielectric Metasurfaces. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 28887-28892	3.8	6
86	Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region. Journal of Physical Chemistry A, 2014 , 118, 333-8	2.8	6

(2017-2012)

8	35	Phase structure and vibrational spectra of rare-earth-oxide ceramics of Dy2(1☑)Tm2x O3. <i>Journal of Materials Science</i> , 2012 , 47, 1697-1701	4.3	6	
8	34	Thermal stability of the nanostructured BaTiO3 determined by long and short range interactions: A dual-shell model. <i>Journal of Applied Physics</i> , 2010 , 107, 064102	2.5	6	
8	33	Sol-gel derived Ba(Mg1/3Ta2/3)O3 thin films: Preparation and structure. <i>Journal of Materials Research</i> , 1997 , 12, 596-599	2.5	6	
8	32	Preparation and characterization of nanocrystalline ZnS/ZnO doped silica inverse opals. <i>Journal of Electroceramics</i> , 2008 , 21, 374-377	1.5	6	
8	31	Preparation of size-controlled nanocrystalline infrared-to-visible upconverting phosphors Gd2O3:Yb,Er by using a water-in-oil microemulsion system. <i>Journal of Electroceramics</i> , 2008 , 21, 765-769	9 ^{1.5}	6	
8	Во	3D direct writing of terahertz metamaterials based on TbFeO3 dielectric ceramics. <i>Applied Physics Letters</i> , 2018 , 113, 081901	3.4	6	
7	'9	Enhanced visible-active photocatalytic behaviors observed in Mn-doped BiFeO3. <i>Modern Physics Letters B</i> , 2018 , 32, 1850185	1.6	6	
7	' 8	Magnetically coupled Fano resonance of dielectric pentamer oligomer. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 275002	3	5	
7	7	A Modularized and Switchable Component for Flexible Passive Device: Terahertz Photonic Crystals with Fine-Tuning. <i>Advanced Optical Materials</i> , 2018 , 6, 1800384	8.1	5	
7	₇ 6	Magnetoelectric cylindrical layered composite structure with multi-resonance frequencies. <i>Science China Technological Sciences</i> , 2013 , 56, 2572-2575	3.5	5	
7	'5	A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2015 , 46, 2503-2513	2.5	5	
7	'4	Terahertz optical parameters and lattice vibration-induced resonance of Er3+-doped Y3Al5O12 crystal. <i>Journal of Electromagnetic Waves and Applications</i> , 2013 , 27, 1792-1799	1.3	5	
7	'3	Preparation and photoluminescence properties of dye doped polymerization crystalline colloidal arrays. <i>Materials Letters</i> , 2010 , 64, 1329-1331	3.3	5	
7	72	Crystallization and dielectric properties of cordierite gel-derived glasses containing B2O3 and P2O5. <i>Ferroelectrics</i> , 2001 , 262, 31-36	0.6	5	
7	7 1	Unipolar memristive switching in bulk negative temperature coefficient thermosensitive ceramics. <i>PLoS ONE</i> , 2013 , 8, e79832	3.7	5	
7	'O	Terahertz transmission of square-particle and rod structured TbFeO3 metamaterials. <i>Materials Letters</i> , 2019 , 234, 66-68	3.3	5	
6	9	Improvement in mechanical properties in AlN-h-BN composites with high thermal conductivity. <i>Journal of Advanced Ceramics</i> ,1	10.7	5	
6	58	Permanent magnetic ferrite based power-tunable metamaterials. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 436, 57-60	2.8	4	

67	Anisotropic terahertz dielectric responses of sodium nitrate crystals. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 6963-7	3.6	4
66	Fano resonance in a subwavelength Mie-based metamolecule with split ring resonator. <i>Applied Physics Letters</i> , 2017 , 110, 254101	3.4	4
65	A Mie resonant antenna with high sensitivity for force and strain measurement. <i>Scientific Reports</i> , 2017 , 7, 4615	4.9	4
64	Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial. <i>International Journal of Antennas and Propagation</i> , 2015 , 2015, 1-6	1.2	4
63	Resonance transmission of electromagnetic wave through a thin dielectric rod. <i>Applied Physics Letters</i> , 2014 , 104, 123902	3.4	4
62	Zero phase delay induced by wavefront modulation in photonic crystals. <i>Physical Review B</i> , 2013 , 87,	3.3	4
61	Hysteretic current-voltage characteristic in polycrystalline ceramic ferrites. <i>Applied Physics Letters</i> , 2010 , 97, 122501	3.4	4
60	Ferroelectric thin films embedding nanoscale metal particles: A novel class of functional composites. <i>Ferroelectrics</i> , 1997 , 196, 85-88	0.6	4
59	Synthesis and dielectric properties of Ba2TiSi2O8 glass-ceramics from the solgel process. <i>Journal of Electroceramics</i> , 2008 , 21, 565-568	1.5	4
58	Oxyfluoride glass-silica ceramic composite for low temperature co-fired ceramics. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 2877-2881	6	4
57	Ordered Ceramic Microstructures from Butterfly Bio-template. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060427083300014-???	3.8	4
56	Nonlinear magnetic properties of Mn-modified Ba/sub 3/Co/sub 2/Fe/sub 23/O/sub 41/ hexaferrite. <i>IEEE Transactions on Magnetics</i> , 2004 , 40, 1947-1951	2	4
55	Artificial Generation of High Harmonics via Nonrelativistic Thomson Scattering in Metamaterial. <i>Research</i> , 2019 , 2019, 1-10	7.8	4
54	Ultrathin Hydrogen Diffusion Cloak. <i>Advanced Theory and Simulations</i> , 2018 , 1, 1700004	3.5	4
53	Adaptive Cylindrical Wireless Metasurfaces in Clinical Magnetic Resonance Imaging. <i>Advanced Materials</i> , 2021 , 33, e2102469	24	4
52	Resistive switching in a negative temperature coefficient metal oxide memristive one-port. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 111, 1045-1049	2.6	3
51	Direct Write Assembly of 3-Dimensional Structures with Aqueous-Based Piezoelectric Inks. <i>Key Engineering Materials</i> , 2012 , 512-515, 390-394	0.4	3
50	Temperature tunable photonic bandgap in PLZT inverse opals. <i>Journal of Electroceramics</i> , 2008 , 21, 711	-7.154	3

49	Ceramic-based dielectric metamaterials 2022 , 1, 11-27		3
48	Energy Band Attraction Effect in Non-Hermitian Systems. <i>Physical Review Letters</i> , 2020 , 125, 137703	7.4	3
47	Investigation of Ni-Cu-Zn Ferrite with High Performance Derived from Nano Ferrite Powders. <i>Ceramic Transactions</i> ,211-218	0.1	3
46	Thermally tunable asymmetric metamolecule. <i>Applied Physics Letters</i> , 2019 , 114, 082901	3.4	2
45	OPTICAL PROPERTIES OF ANTHRACENE SINGLE CRYSTALS GROWN BY A SIMPLE SOLUTION TECHNIQUE. <i>International Journal of Modern Physics B</i> , 2013 , 27, 1350022	1.1	2
44	Metal-enhanced fluorescence of lanthanide chelates near silver nanostructured films. <i>Science Bulletin</i> , 2010 , 55, 3746-3749		2
43	Transparency cloak based on High-k BST rods 2008 ,		2
42	Preparation and structure of Ba(Mg1/3Ta2/3)O3 thin films derived from a sol-gel process. <i>Journal of Materials Science Letters</i> , 1996 , 15, 1808-1810		2
41	Transient characters of the unity reflection phenomenon in all-dielectric magnetic metamaterials. <i>OSA Continuum</i> , 2018 , 1, 634	1.4	2
40	Visible Achromatic Metalens Design Based on Artificial Neural Network. <i>Advanced Optical Materials</i> ,21	018842	2
39	Preparation of 3D Ceramic Meshes by Direct-write Method and Modulation of Its Photocatalytic Properties by Structure Design. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2012 , 27, 102-106	1	2
38	Quantitative analyses of electric fieldInduced phase transition in (Na, K)0.5Bi0.5TiO3:Eu ceramics by photoluminescence. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 2296-2301	3.8	2
37	High-efficiency cross-polarization conversion metamaterial using spiral split-ring resonators. <i>AIP Advances</i> , 2020 , 10, 095210	1.5	2
36	Manufacture and Characterization of Low Temperature Sintered Co2Z Ceramics. <i>Ceramic Transactions</i> ,125-135	0.1	2
35	Effects of reversed arrangement of electrodes on electrospun nanofibers. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	1
34	Tunable ferrite-dielectric metamolecule with Fano resonance. <i>AIP Advances</i> , 2019 , 9, 055325	1.5	1
33	Analyses of Electric Field-Induced Phase Transformation by Luminescence Study in Eu-doped (Na, K)BiTiO Ceramics. <i>Materials</i> , 2020 , 13,	3.5	1
	Enhanced thermal expansion by micro-displacement amplifying mechanical metamaterial. MRS	0.7	

31	Metamaterial inspired electrically small patch antenna 2011,		1
30	Intrinsic abnormal electromagnetic medium based on polar lattice vibration. <i>Science Bulletin</i> , 2011 , 56, 1318-1324		1
29	Complex Impedance Spectroscopy of Bi-Substituted Yttrium Iron Garnet (YIG). <i>Key Engineering Materials</i> , 2007 , 336-338, 709-711	0.4	1
28	Interfacial investigation of the Co-fired NiCuZn Ferrite/PMN composite prepared by tape casting. <i>Journal of Electroceramics</i> , 2008 , 21, 536-540	1.5	1
27	Microwave Bandgap in Multilayer Ceramic Structures. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 1087-1090	3.8	1
26	Miniaturization of dielectric ceramic-based metamaterial perfect absorber. <i>Applied Physics Letters</i> , 2022 , 120, 013502	3.4	1
25	Influence of Mass and Heat Transfer on Morphologies of Metal Oxide Nanochannel Arrays Prepared by Anodization Method. <i>ISRN Nanotechnology</i> , 2011 , 2011, 1-5		1
24	Ultra-compact photonic crystal couplers for optical switches based on band-edge resonance. Advanced Composites and Hybrid Materials,1	8.7	1
23	Unipolar memristive switching in bulk positive temperature coefficient ceramic thermistor. <i>Modern Physics Letters B</i> , 2016 , 30, 1650025	1.6	1
22	Numerically Denoising Thermally Tunable and Thickness-Dependent Terahertz Signals in ErFeO3 Based on BZier Curves and B-Splines. <i>Annalen Der Physik</i> , 2021 , 533, 2000464	2.6	1
21	Dielectric Environment Manipulation toward Versatile Light Scattering of High Refractive Index Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 26177-26188	3.8	1
20	Dielectric meta-atom with tunable resonant frequency temperature coefficient. <i>Scientific Reports</i> , 2017 , 7, 2566	4.9	O
19	Strong Suppression and Enhancement of Photoluminescence in Zn2SiO4:Mn2+ Inverse Opal Photonic Crystals. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060427083300027-???	3.8	0
18	Smoothing method to directly denoise terahertz signals in rare-earth orthoferrite antiferromagnets. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 3325-3333	3.8	O
17	Rare Earth Orthoferrite Tuning of Transmitted Waves as Natural Metamaterials. <i>ACS Applied Materials & ACS Applied</i> Materials & Materials	9.5	0
16	Molecular Conformation Engineering To Achieve Longer and Brighter Deep Red/Near-Infrared Emission in Crystalline State. <i>Journal of Physical Chemistry Letters</i> , 2022 , 13, 4754-4761	6.4	O
15	Fabrication of dimension controlled BiFeO3 microcrystal. <i>Modern Physics Letters B</i> , 2019 , 33, 1950125	1.6	
14	Unipolar photonic memristive-like nonlinear switching in split-ring resonator based metamaterials. <i>Current Applied Physics</i> , 2018 , 18, 447-451	2.6	

LIST OF PUBLICATIONS

13	Significantly Altered Macroscopic Magnetic Properties and Terahertz Magnetic Resonance of Gadolinium Orthoferrite by Titanium Addition. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-6	2
12	Tunable thermo-stable microwave filter using dielectric metamolecule. <i>Applied Physics Letters</i> , 2019 , 114, 232904	3-4
11	Structure and Manufacturing Process of MnO2 Counter Electrode in Niobium Suboxide Capacitors. Journal of Electronic Materials, 2013 , 42, 2933-2939	1.9
10	Metamaterials: Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices (Adv. Mater. 40/2015). <i>Advanced Materials</i> , 2015 , 27, 6304-6304	24
9	Recent Advances in Theory and Applications of Electromagnetic Metamaterials. <i>International Journal of Antennas and Propagation</i> , 2015 , 2015, 1-2	1.2
8	Significant Suppression of Photoluminescence in Eu3+ Doped LaPO4 Inverse Opal Photonic Crystals. <i>Advanced Materials Research</i> , 2011 , 311-313, 1217-1221	0.5
7	Enhancement of second-order harmonic generation in polarized BaTiO3 thin films embedded with Ag nanoparticles. <i>Science Bulletin</i> , 1997 , 42, 1319-1320	
6	Cofiring Behavior of Ferroelectric Ferromagnetic Composites. <i>Key Engineering Materials</i> , 2008 , 368-372, 573-575	0.4
5	Fabrication of Barium Strontium Titanate Inverse Opals by the Sol © el Process. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 070922001254006-???	3.8
4	Photonic structures in butterflyThaumantis diores. <i>Science Bulletin</i> , 2004 , 49, 2545-2546	
3	Synthesis of inverse opal polymer films. <i>Journal of Materials Science Letters</i> , 2003 , 22, 1295-1297	
2	Low dielectric constant borophosphosilicate glass-ceramics: Synthesis and properties. <i>Ferroelectrics</i> , 2001 , 262, 239-244	0.6
1	Multiple Periodic Vibrations of Auxetic Honeycomb Sandwich Plate with 1:2 Internal Resonance. Journal of Nonlinear Mathematical Physics, 1	0.9