List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540770/publications.pdf Version: 2024-02-01

TERESAL MOOD

#	Article	IF	CITATIONS
1	p70S6 kinase regulates oligodendrocyte differentiation and is active in remyelinating lesions. Brain Communications, 2022, 4, fcac025.	1.5	2
2	Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord. Cell Reports, 2022, 38, 110423.	2.9	18
3	The mechanistic target of rapamycin as a regulator of metabolic function in oligodendroglia during remyelination. Current Opinion in Pharmacology, 2022, 63, 102193.	1.7	2
4	Subventricular zone adult mouse neural stem cells require insulin receptor forÂself-renewal. Stem Cell Reports, 2022, 17, 1411-1427.	2.3	3
5	PAK1 Positively Regulates Oligodendrocyte Morphology and Myelination. Journal of Neuroscience, 2021, 41, 1864-1877.	1.7	17
6	mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model. Journal of Neuroscience, 2021, 41, 8321-8337.	1.7	15
7	The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia, 2020, 68, 1274-1290.	2.5	21
8	Cnp Promoter-Driven Sustained ERK1/2 Activation Increases B-Cell Activation and Suppresses Experimental Autoimmune Encephalomyelitis. ASN Neuro, 2020, 12, 175909142097191.	1.5	4
9	Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination. Journal of Neuroscience, 2020, 40, 2993-3007.	1.7	31
10	RNA-binding protein CUGBP1 controls the differential INSR splicing in molecular subtypes of breast cancer cells and affects cell aggressiveness. Carcinogenesis, 2020, 41, 1294-1305.	1.3	15
11	Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine. Stem Cell Reports, 2019, 12, 816-830.	2.3	47
12	Crk adaptor protein promotes PD-L1 expression, EMT and immune evasion in a murine model of triple-negative breast cancer. Oncolmmunology, 2018, 7, e1376155.	2.1	34
13	Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment. Breast Cancer Research, 2018, 20, 138.	2.2	32
14	Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination. Journal of Neuroscience, 2017, 37, 7534-7546.	1.7	20
15	LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development. Scientific Reports, 2016, 6, 35810.	1.6	9
16	Differential Expression of IR-A, IR-B and IGF-1R in Endometrial Physiology and Distinct Signature in Adenocarcinoma. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2883-2891.	1.8	30
17	Heterogeneity in oligodendroglia: Is it relevant to mouse models and human disease?. Journal of Neuroscience Research, 2016, 94, 1421-1433.	1.3	17
18	Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nature Communications, 2016, 7, 12185.	5.8	47

#	Article	IF	CITATIONS
19	Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms. Endocrinology, 2016, 157, 1702-1708.	1.4	7
20	Crosstalk of the Insulin-Like Growth Factor Receptor with the Wnt Signaling Pathway in Breast Cancer. Frontiers in Endocrinology, 2015, 6, 92.	1.5	21
21	Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nature Reviews Endocrinology, 2015, 11, 161-170.	4.3	132
22	Mammalian Target of Rapamycin Promotes Oligodendrocyte Differentiation, Initiation and Extent of CNS Myelination. Journal of Neuroscience, 2014, 34, 4453-4465.	1.7	151
23	Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxiaââ,¬â€œlschemia. Frontiers in Neurology, 2014, 5, 79.	1.1	15
24	IGF1R Inhibition in Mammary Epithelia Promotes Canonical Wnt Signaling and Wnt1-Driven Tumors. Cancer Research, 2014, 74, 5668-5679.	0.4	33
25	Conditional Ablation of Raptor or Rictor Has Differential Impact on Oligodendrocyte Differentiation and CNS Myelination. Journal of Neuroscience, 2014, 34, 4466-4480.	1.7	141
26	Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Signaling and Cell Death in the Immature Central Nervous System after Hypoxia-Ischemia and Inflammation. Journal of Biological Chemistry, 2014, 289, 9430-9439.	1.6	82
27	Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion. Journal of Biological Chemistry, 2014, 289, 4626-4633.	1.6	46
28	Identification of Bax-Interacting Proteins in Oligodendrocyte Progenitors during Glutamate Excitotoxicity and Perinatal Hypoxia–Ischemia. ASN Neuro, 2013, 5, AN20130027.	1.5	25
29	mTOR: A Link from the Extracellular Milieu to Transcriptional Regulation of Oligodendrocyte Development. ASN Neuro, 2013, 5, AN20120092.	1.5	62
30	Determining Mammosphere-Forming Potential: Application of the Limiting Dilution Analysis. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 119-123.	1.0	57
31	Introduction. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 89-90.	1.0	Ο
32	iTRAQ Proteomics Profiling of Regulatory Proteins During Oligodendrocyte Differentiation. Neuromethods, 2012, , 119-138.	0.2	1
33	IGF-II Promotes Stemness of Neural Restricted Precursors. Stem Cells, 2012, 30, 1265-1276.	1.4	75
34	Insulinâ€like growth factor I regulates G2/M progression through mammalian target of rapamycin signaling in oligodendrocyte progenitors. Glia, 2012, 60, 1684-1695.	2.5	27
35	Decreased IGF Type 1 Receptor Signaling in Mammary Epithelium during Pregnancy Leads to Reduced Proliferation, Alveolar Differentiation, and Expression of Insulin Receptor Substrate (IRS)-1 and IRS-2. Endocrinology, 2011, 152, 3233-3245.	1.4	25
36	Proteomic identification of novel targets regulated by the mammalian target of rapamycin pathway during oligodendrocyte differentiation. Glia, 2011, 59, 1754-1769.	2.5	60

#	Article	IF	CITATIONS
37	Insulin-Mediated Acceleration of Breast Cancer Development and Progression in a Nonobese Model of Type 2 Diabetes. Cancer Research, 2010, 70, 741-751.	0.4	250
38	Elevated Circulating IGF-I Promotes Mammary Gland Development and Proliferation. Endocrinology, 2010, 151, 5751-5761.	1.4	32
39	Insulin-Like Growth Factor Type 1 Receptor and Insulin Receptor Isoform Expression and Signaling in Mammary Epithelial Cells. Endocrinology, 2009, 150, 3611-3619.	1.4	40
40	Activation of the Mammalian Target of Rapamycin (mTOR) Is Essential for Oligodendrocyte Differentiation. Journal of Neuroscience, 2009, 29, 6367-6378.	1.7	233
41	Insulinâ€like growth factorâ€lâ€stimulated Akt phosphorylation and oligodendrocyte progenitor cell survival require cholesterolâ€enriched membranes. Journal of Neuroscience Research, 2009, 87, 3369-3377.	1.3	29
42	Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions. Endocrine Reviews, 2009, 30, 51-74.	8.9	141
43	The IGF System in Mammary Development and Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 351-352.	1.0	7
44	IGF Ligand and Receptor Regulation of Mammary Development. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 361-370.	1.0	32
45	Directing traffic in neural cells: determinants of receptor tyrosine kinase localization and cellular responses. Journal of Neurochemistry, 2008, 105, 2055-2068.	2.1	20
46	Gender-Specific Changes in Bone Turnover and Skeletal Architecture in Igfbp-2-Null Mice. Endocrinology, 2008, 149, 2051-2061.	1.4	108
47	Insulin-like Growth Factor Type-I Receptor Internalization and Recycling Mediate the Sustained Phosphorylation of Akt. Journal of Biological Chemistry, 2007, 282, 22513-22524.	1.6	109
48	Delayed IGF-1 Administration Rescues Oligodendrocyte Progenitors from Glutamate-Induced Cell Death and Hypoxic-Ischemic Brain Damage. Developmental Neuroscience, 2007, 29, 302-310.	1.0	58
49	Delayed Mammary Gland Involution in Mice with Mutation of the Insulin-Like Growth Factor Binding Protein 5 Gene. Endocrinology, 2007, 148, 2138-2147.	1.4	59
50	Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathways. Glia, 2007, 55, 1011-1022.	2.5	61
51	Epithelial-Specific and Stage-Specific Functions of Insulin-Like Growth Factor-I during Postnatal Mammary Development. Endocrinology, 2006, 147, 5412-5423.	1.4	45
52	IGF-I and Brain Growth: Multifarious Effects on Developing Neural Cells and Mechanisms of Action. , 2005, , 77-93.		3
53	Expression of the Insulin-Like Growth Factor Binding Proteins during Postnatal Development of the Murine Mammary Gland. Endocrinology, 2004, 145, 2467-2477.	1.4	40
54	Growth Factor Regulation of Cell Cycle Progression in Mammary Epithelial Cells. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 15-26.	1.0	37

#	Article	IF	CITATIONS
55	Preface: The Cell Cycle. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 1-2.	1.0	0
56	IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in O4+ oligodendrocyte progenitors. Glia, 2004, 46, 183-194.	2.5	74
57	Protection against hypoxic–ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Molecular and Cellular Neurosciences, 2004, 25, 585-593.	1.0	44
58	IGF-I and FGF-2 coordinately enhance cyclin D1 and cyclin E–cdk2 association and activity to promote G1 progression in oligodendrocyte progenitor cells. Molecular and Cellular Neurosciences, 2004, 25, 480-492.	1.0	75
59	Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. Journal of Neuroscience Research, 2003, 71, 46-63.	1.3	158
60	Expression of the IGFs, IGF-IR and IGFBPs in the Normal Mammary Gland and Breast. Breast Disease, 2003, 17, 15-26.	0.4	2
61	Requirement for IGF-I in Epidermal Growth Factor-Mediated Cell Cycle Progression of Mammary Epithelial Cells. Endocrinology, 2002, 143, 1872-1879.	1.4	53
62	IGF-I and NT-3 Signaling Pathways in Developing Oligodendrocytes: Differential Regulation and Activation of Receptors and the Downstream Effector Akt. Developmental Neuroscience, 2002, 24, 437-445.	1.0	53
63	Insulin-like Growth Factor I, but Not Neurotrophin-3, Sustains Akt Activation and Provides Long-Term Protection of Immature Oligodendrocytes from Glutamate-Mediated Apoptosis. Molecular and Cellular Neurosciences, 2002, 20, 476-488.	1.0	96
64	Disruption of Steroid and Prolactin Receptor Patterning in the Mammary Gland Correlates with a Block in Lobuloalveolar Development. Molecular Endocrinology, 2002, 16, 2675-2691.	3.7	105
65	IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia, 2002, 39, 85-97.	2.5	132
66	IGF-I Synergizes with FGF-2 to Stimulate Oligodendrocyte Progenitor Entry into the Cell Cycle. Developmental Biology, 2001, 232, 414-423.	0.9	86
67	Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter Oligodendrocyte Progenitors. Developmental Neuroscience, 2001, 23, 203-208.	1.0	128
68	Experimental Stroke in the Female Diabetic, db/db, Mouse. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 52-60.	2.4	141
69	The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 31-42.	1.0	75
70	Introduction: IGFs and IGFBPs in the normal mammary gland and in breast cancer. , 2000, 5, 1-5.		26
71	Selective Alterations in Organ Sizes in Mice with a Targeted Disruption of the Insulin-Like Growth Factor Binding Protein-2 Gene. Molecular Endocrinology, 2000, 14, 1472-1482.	3.7	98
72	The Insulin-Like Growth Factors (IGF) and IGF Type I Receptor during Postnatal Growth of the Murine Mammary Gland: Sites of Messenger Ribonucleic Acid Expression and Potential Functions**This work was supported, in part, by NIH Grant DK-48103 (to T.L.W.). Endocrinology, 1999, 140, 454-461.	1.4	81

#	Article	IF	CITATIONS
73	Ciliary neurotrophic factor induces expression of the IGF type I receptor and FGF receptor 1 mRNAs in adult rat brain oligodendrocytes. Journal of Neuroscience Research, 1999, 57, 447-457.	1.3	25
74	Expression and Regulation of Insulin-like Growth Factors and Their Binding Proteins in the Normal Breast. , 1999, , 39-52.		5
75	Expression of Mouse Ovarian Insulin Growth Factor System Components During Follicular Development and Atresia**This work was supported by NIH Grant HD-24565 (to J.M.H.) and an NIH fellowship (to S.A.W) Endocrinology, 1998, 139, 5205-5214.	1.4	75
76	Developmental and Tissue-Specific Sulfonylurea Receptor Gene Expression. Endocrinology, 1997, 138, 705-711.	1.4	22
77	Acute Exposure to CNTFin VivoInduces Multiple Components of Reactive Gliosis. Experimental Neurology, 1996, 141, 256-268.	2.0	103
78	Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model Journal of Clinical Investigation, 1996, 97, 2225-2232.	3.9	192
79	Genetic Approaches to the Function of Insulin-Like Growth Factor-Binding Proteins during Rodent Development. Hormone Research, 1996, 45, 172-177.	1.8	32
80	Cytokines regulate IGF binding proteins in the CNS. Progress in Growth Factor Research, 1995, 6, 181-187.	1.7	16
81	Insulin-like growth factor-I and insulin-like growth factor binding protein-3 inhibit involution of the mammary gland following lactation: Studies in transgenic mice. Progress in Growth Factor Research, 1995, 6, 433-436.	1.7	33
82	Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development Endocrinology, 1994, 134, 954-962.	1.4	98
83	Expression of the gene for the neuronal intermediate filament protein ?-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. Journal of Comparative Neurology, 1994, 342, 161-173.	0.9	122
84	Tissue-specific expression of the insulin-like growth factor binding protein (IGFBP) mRNAs in mouse and rat development. Regulatory Peptides, 1993, 48, 189-198.	1.9	49
85	Insulin-like growth factor I and II and insulin-like growth factor binding protein-2 RNAs are expressed in adjacent tissues within rat embryonic and fetal limbs. Developmental Biology, 1992, 151, 586-596.	0.9	66
86	Hormonal Regulation of Rat Hypothalamic Neuropeptide mRNAs: Effect of Hypophysectomy and Hormone Replacement on Growth-Hormone-Releasing Factor, Somatostatin and the Insulin-Like Growth Factors. Neuroendocrinology, 1991, 53, 298-305.	1.2	53
87	Expression of IGF-II, the IGF-II/Mannose-6-Phosphate Receptor and IGFBP-2 During Rat Embryogenesis. Advances in Experimental Medicine and Biology, 1991, 293, 325-333.	0.8	11
88	The Expression Pattern of an Insulin-Like Growth Factor (IGF)-Binding Protein Gene Is Distinct from IGF-II in the Midgestational Rat Embryo. Molecular Endocrinology, 1990, 4, 1257-1263.	3.7	100
89	Altered Pituitary Growth Hormone (GH) Regulation in Streptozotocin-Diabetic Rats: A Combined Defect of Hypothalamic Somatostatin and GH-Releasing Factor*. Endocrinology, 1990, 126, 53-61.	1.4	79
90	Molecular Cloning of Mammalian 28,000 Mr Vitamin D-Dependent Calcium Binding Protein (Calbindin-D28K): Expression of Calbindin-D28K RNAs in Rodent Brain and Kidney. DNA and Cell Biology, 1988, 7, 585-593.	5.1	70

#	Article	IF	CITATIONS
91	Regional distribution of messenger RNAs in postmortem human brain. Journal of Neuroscience Research, 1986, 16, 311-324.	1.3	39
92	Activation Versus Inhibition of IGF1R: A Dual Role in Breast Tumorigenesis. Frontiers in Endocrinology, 0, 13, .	1.5	3