
Abhay Kotecha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryo-EM structures of amyloid- \hat{l}^2 42 filaments from human brains. Science, 2022, 375, 167-172.	6.0	228
2	Routine Collection of High-Resolution cryo-EM Datasets Using 200 KV Transmission Electron Microscope. Journal of Visualized Experiments, 2022, , .	0.2	5
3	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	13.7	88
4	Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. ELife, 2022, 11, .	2.8	121
5	Exploring high-resolution cryo-ET and subtomogram averaging capabilities of contemporary DEDs. Journal of Structural Biology, 2022, 214, 107852.	1.3	18
6	Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glycoproteins. Nature Communications, 2021, 12, 1238.	5.8	37
7	CryoET structures of immature HIV Gag reveal six-helix bundle. Communications Biology, 2021, 4, 481.	2.0	28
8	Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nature Structural and Molecular Biology, 2021, 28, 573-582.	3.6	172
9	Thermo Scientificâ,,¢ Tundra Cryo-TEM: 100kV Cryo-TEM dedicated for Single Particle Analysis. Microscopy and Microanalysis, 2021, 27, 1330-1332.	0.2	1
10	Evolving cryo-EM structural approaches for GPCR drug discovery. Structure, 2021, 29, 963-974.e6.	1.6	29
11	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	13.7	409
12	Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 2020, 11, 38.	5.8	28
13	Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathogens, 2020, 16, e1008828.	2.1	3
14	Single-particle cryo-EM at atomic resolution. Nature, 2020, 587, 152-156.	13.7	572
15	Structural and functional analysis of protective antibodies targeting the threefold plateau of enterovirus 71. Nature Communications, 2020, 11, 5253.	5.8	11
16	Assembly intermediates of orthoreovirus captured in the cell. Nature Communications, 2020, 11, 4445.	5.8	36
17	Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science, 2020, 367, 806-810.	6.0	73

18 Title is missing!. , 2020, 16, e1008828.

Авнау Котесна

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008828.		0
20	Title is missing!. , 2020, 16, e1008828.		0
21	Title is missing!. , 2020, 16, e1008828.		0
22	Title is missing!. , 2020, 16, e1008828.		0
23	Title is missing!. , 2020, 16, e1008828.		0
24	Multiple liquid crystalline geometries of highly compacted nucleic acid in a dsRNA virus. Nature, 2019, 570, 252-256.	13.7	59
25	The role of the light chain in the structure and binding activity of two cattle antibodies that neutralize bovine respiratory syncytial virus. Molecular Immunology, 2019, 112, 123-130.	1.0	11
26	The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins. Nature Communications, 2019, 10, 846.	5.8	37
27	GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 2019, 565, 454-459.	13.7	386
28	Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nature Microbiology, 2019, 4, 414-419.	5.9	73
29	Machining protein microcrystals for structure determination by electron diffraction. Proceedings of the United States of America, 2018, 115, 9569-9573.	3.3	69
30	Chimeric O1K foot-and-mouth disease virus with SAT2 outer capsid as an FMD vaccine candidate. Scientific Reports, 2018, 8, 13654.	1.6	11
31	Generation and characterisation of recombinant FMDV antibodies: Applications for advancing diagnostic and laboratory assays. PLoS ONE, 2018, 13, e0201853.	1.1	3
32	A supramolecular assembly mediates lentiviral DNA integration. Science, 2017, 355, 93-95.	6.0	96
33	Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 770-775.	3.3	42
34	The B Cell Response to Foot-and-Mouth Disease Virus in Cattle following Sequential Vaccination with Multiple Serotypes. Journal of Virology, 2017, 91, .	1.5	5
35	CMG–Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4141-4146.	3.3	88
36	High-speed fixed-target serial virus crystallography. Nature Methods, 2017, 14, 805-810.	9.0	106

Авнау Котесна

#	Article	IF	CITATIONS
37	Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nature Communications, 2017, 8, 15408.	5.8	75
38	Double-stranded RNA virus outer shell assembly by bona fide domain-swapping. Nature Communications, 2017, 8, 14814.	5.8	35
39	SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. Journal of Virology, 2017, 91, .	1.5	28
40	Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer's and cat allergy. Npj Vaccines, 2017, 2, 30.	2.9	78
41	Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine. Nature Communications, 2017, 8, 245.	5.8	91
42	Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathogens, 2017, 13, e1006607.	2.1	21
43	Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nature Communications, 2016, 7, 10708.	5.8	109
44	Structure of human Aichi virus and implications for receptor binding. Nature Microbiology, 2016, 1, 16150.	5.9	36
45	Application of the thermofluor PaSTRy technique for improving foot-and-mouth disease virus vaccine formulation. Journal of General Virology, 2016, 97, 1557-1565.	1.3	21
46	Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nature Communications, 2015, 6, 8843.	5.8	225
47	Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nature Communications, 2015, 6, 8316.	5.8	43
48	Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nature Structural and Molecular Biology, 2015, 22, 788-794.	3.6	89
49	Evolution of low-light adapted peripheral light-harvesting complexes in strains of Rhodopseudomonas palustris. Photosynthesis Research, 2013, 114, 155-164.	1.6	11
50	Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. Journal of Virological Methods, 2013, 187, 406-412.	1.0	51
51	Rational Engineering of Recombinant Picornavirus Capsids to Produce Safe, Protective Vaccine Antigen. PLoS Pathogens, 2013, 9, e1003255.	2.1	126
52	<i>In situ</i> macromolecular crystallography using microbeams. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 592-600.	2.5	113
53	Universal detection of foot and mouth disease virus based on the conserved VPO protein. Wellcome Open Research, 0, 3, 88.	0.9	2