
Ann-Beth Jonsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of Human Beta-Defensin 2 Expression by Pathogenic Neisseria meningitidis and Commensal Lactobacilli. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	5
2	DNA Blocks the Lethal Effect of Human Beta-Defensin 2 Against Neisseria meningitidis. Frontiers in Microbiology, 2021, 12, 697232.	1.5	3
3	Lactate-Induced Dispersal of Neisseria meningitidis Microcolonies Is Mediated by Changes in Cell Density and Pilus Retraction and Is Influenced by Temperature Change. Infection and Immunity, 2021, 89, e0029621.	1.0	2
4	Lactobacillus gasseri Suppresses the Production of Proinflammatory Cytokines in Helicobacter pylori-Infected Macrophages by Inhibiting the Expression of ADAM17. Frontiers in Immunology, 2019, 10, 2326.	2.2	32
5	Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release. Frontiers in Microbiology, 2019, 10, 422.	1.5	6
6	Role of Sortase A in Lactobacillus gasseri Kx110A1 Adhesion to Gastric Epithelial Cells and Competitive Exclusion of Helicobacter pylori. Frontiers in Microbiology, 2019, 10, 2770.	1.5	22
7	Quantification of Neisseria meningitidis Adherence to Human Epithelial Cells by Colony Counting. Bio-protocol, 2018, 8, e2709.	0.2	8
8	Live-cell Imaging of Neisseria meningitidis Microcolony Dispersal Induced by Lactate or Other Molecules. Bio-protocol, 2018, 8, e2695.	0.2	0
9	Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal. PLoS Pathogens, 2017, 13, e1006251.	2.1	25
10	Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells. Frontiers in Microbiology, 2016, 7, 1176.	1.5	25
11	Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression. Infection and Immunity, 2016, 84, 1526-1535.	1.0	59
12	Neisseria meningitidis Polynucleotide Phosphorylase Affects Aggregation, Adhesion, and Virulence. Infection and Immunity, 2016, 84, 1501-1513.	1.0	20
13	Characterization of motility and piliation in pathogenic Neisseria. BMC Microbiology, 2015, 15, 92.	1.3	21
14	Helicobacter pylori Protein JHP0290 Binds to Multiple Cell Types and Induces Macrophage Apoptosis via Tumor Necrosis Factor (TNF)-Dependent and Independent Pathways. PLoS ONE, 2013, 8, e77872.	1.1	23
15	Loss of Meningococcal PilU Delays Microcolony Formation and Attenuates Virulence <i>In Vivo</i> . Infection and Immunity, 2012, 80, 2538-2547.	1.0	22
16	The Complement Regulator CD46 Is Bactericidal to Helicobacter pylori and Blocks Urease Activity. Gastroenterology, 2011, 141, 918-928.	0.6	9
17	NafA Negatively Controls Neisseria meningitidis Piliation. PLoS ONE, 2011, 6, e21749.	1.1	13
18	Endotoxin, Capsule, and Bacterial Attachment Contribute to <i>Neisseria meningitidis</i> Resistance to the Human Antimicrobial Peptide LL-37. Journal of Bacteriology, 2009, 191, 3861-3868.	1.0	71

ANN-BETH JONSSON

#	Article	IF	CITATIONS
19	Meningococcal Outer Membrane Protein NhhA Is Essential for Colonization and Disease by Preventing Phagocytosis and Complement Attack. Infection and Immunity, 2008, 76, 5412-5420.	1.0	48
20	Imaging of Disease Dynamics during Meningococcal Sepsis. PLoS ONE, 2007, 2, e241.	1.1	43
21	Force generation in small ensembles of Brownian motors. Physical Review E, 2006, 74, 021908.	0.8	9
22	Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cellular Microbiology, 2005, 7, 1009-1017.	1.1	102
23	Human-Like Immune Responses in CD46 Transgenic Mice. Journal of Immunology, 2005, 175, 433-440.	0.4	42
24	Lipooligosaccharide-Deficient Neisseria meningitidis Shows Altered Pilus-Associated Characteristics. Infection and Immunity, 2003, 71, 155-162.	1.0	58
25	CD46 in Meningococcal Disease. Science, 2003, 301, 373-375.	6.0	168
26	Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46: identification of domains important for bacterial adherence. Cellular Microbiology, 2001, 3, 133-143.	1.1	87
27	Soluble Pilin of Neisseria gonorrhoeae Interacts with Human Target Cells and Tissue. Infection and Immunity, 2001, 69, 6419-6426.	1.0	16
28	Identification of a human cDNA clone that mediates adherence of pathogenicNeisseriato non-binding cells. FEMS Microbiology Letters, 1998, 162, 25-30.	0.7	1
29	The phase-variable pilus-associated protein PilC is commonly expressed in clinical isolates of Neisseria gonorrhoeae, and shows sequence variability among strains. Microbiology (United Kingdom), 1998, 144, 149-156.	0.7	13
30	PilC of pathogenic Neisseria is associated with the bacterial cell surface. Molecular Microbiology, 1997, 25, 11-25.	1.2	115
31	Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Molecular Microbiology, 1997, 25, 639-647.	1.2	325
32	Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Molecular Microbiology, 1994, 13, 403-416.	1.2	115
33	Sequence changes in the pilus subunit lead to variation of Neisseria gonorrhoeae to human tissue. Molecular Microbiology, 1994, 14, 1103-1103.	1.2	2