
Stephane Panserat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540439/publications.pdf Version: 2024-02-01

STEDHANE DANSEDAT

#	Article	IF	CITATIONS
1	Glucose metabolism in fish: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182, 1015-1045.	0.7	641
2	Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry, 2009, 35, 519-539.	0.9	394
3	Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture, 2017, 467, 3-27.	1.7	369
4	Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 2006, 96, 299-309.	1.2	172
5	An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (<i>Oncorhynchus) Tj ETQq1 1 0. 295, R329-R335.</i>	784314 rgE 0.9	3T /Overlock 153
6	Effects of dietary amino acid profile on growth performance, key metabolic enzymes and somatotropic axis responsiveness of gilthead sea bream (Sparus aurata). Aquaculture, 2003, 220, 749-767.	1.7	142
7	Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss)11The Genbank accession number for the rainbow trout G6Pase sequence is AF120150 Journal of Nutritional Biochemistry, 2000, 11, 22-29.	1.9	135
8	Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. Journal of Experimental Biology, 2012, 215, 2567-2578.	0.8	126
9	Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture, 2009, 294, 123-131.	1.7	123
10	Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids, 2010, 39, 801-810.	1.2	123
11	Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture, 2008, 274, 101-108.	1.7	121
12	Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R733-R743.	0.9	113
13	Dietary Carbohydrate Utilization by European Sea Bass (<i>Dicentrarchus labrax</i> L.) and Gilthead Sea Bream (<i>Sparus aurata</i> L.) Juveniles. Reviews in Fisheries Science, 2011, 19, 201-215.	2.1	111
14	Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1421-R1429.	0.9	109
15	Effect of dietary carbohydrate-to-lipid ratios on growth, lipid deposition and metabolic hepatic enzymes in juvenile Senegalese sole (Solea senegalensis, Kaup). Aquaculture Research, 2004, 35, 1122-1130.	0.9	107
16	High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. Journal of Experimental Biology, 2014, 217, 3396-3406.	0.8	107
17	Insulin regulates the expression of several metabolism-related genes in the liver and primary hepatocytes of rainbow trout (<i>Oncorhynchus mykiss</i>). Journal of Experimental Biology, 2008, 211, 2510-2518.	0.8	100
18	ÊŸ-Leucine, ÊŸ-Methionine, and ÊŸ-Lysine Are Involved in the Regulation of Intermediary Metabolism-Related Gene Expression in Rainbow Trout Hepatocytes,. Journal of Nutrition, 2011, 141, 75-80.	1.3	98

#	Article	IF	CITATIONS
19	Low Protein Intake Is Associated with Reduced Hepatic Gluconeogenic Enzyme Expression in Rainbow Trout (Oncorhynchus mykiss). Journal of Nutrition, 2003, 133, 2561-2564.	1.3	93
20	The Positive Impact of the Early-Feeding of a Plant-Based Diet on Its Future Acceptance and Utilisation in Rainbow Trout. PLoS ONE, 2013, 8, e83162.	1.1	92
21	Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (<i>Oncorhynchus mykiss</i>). British Journal of Nutrition, 2014, 112, 493-503.	1.2	88
22	Postprandial Regulation of Hepatic MicroRNAs Predicted to Target the Insulin Pathway in Rainbow Trout. PLoS ONE, 2012, 7, e38604.	1.1	86
23	New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (<i>Oncorhynchus mykiss</i>): a gene duplication trail. Physiological Genomics, 2015, 47, 253-263.	1.0	85
24	High levels of dietary fat impair glucose homeostasis in rainbow trout. Journal of Experimental Biology, 2012, 215, 169-178.	0.8	84
25	Feeding Status Regulates the Polyubiquitination Step of the Ubiquitin-Proteasome-Dependent Proteolysis in Rainbow Trout (Oncorhynchus mykiss) Muscle. Journal of Nutrition, 2008, 138, 487-491.	1.3	80
26	Hepatic gene expression profiles in juvenile rainbow trout (<i>Oncorhynchus mykiss</i>) fed fishmeal or fish oil-free diets. British Journal of Nutrition, 2008, 100, 953-967.	1.2	78
27	Hepatic protein kinase B (Akt)–target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets. British Journal of Nutrition, 2009, 102, 1564.	1.2	77
28	Regulation of gene expression by nutritional factors in fish. Aquaculture Research, 2010, 41, 751-762.	0.9	77
29	Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regulatory Peptides, 2003, 110, 123-132.	1.9	76
30	Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics, 2016, 17, 449.	1.2	72
31	Altered dietary carbohydrates significantly affect gene expression of the major glucosensing components in Brockmann bodies and hypothalamus of rainbow trout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1077-R1088.	0.9	71
32	An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 157, 258-266.	0.7	69
33	Molecular regulation of lipid metabolism in liver and muscle of rainbow trout subjected to acute and chronic insulin treatments. Domestic Animal Endocrinology, 2010, 39, 26-33.	0.8	65
34	The Metabolic Consequences of Hepatic AMP-Kinase Phosphorylation in Rainbow Trout. PLoS ONE, 2011, 6, e20228.	1.1	65
35	Adaptation of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates: New insights from a long term nutritional study. Aquaculture, 2018, 496, 58-65.	1.7	64
36	Insulin-induced hypoglycaemia is co-ordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (<i>Oncorhynchus mykiss</i>). Journal of Experimental Biology, 2010, 213, 1443-1452.	0.8	63

#	Article	IF	CITATIONS
37	The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 429-438.	0.7	62
38	Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles. British Journal of Nutrition, 2016, 116, 19-34.	1.2	62
39	Apparent low ability of liver and muscle to adapt to variation of dietary carbohydrate:protein ratio in rainbow trout (<i>Oncorhynchus mykiss</i>). British Journal of Nutrition, 2013, 109, 1359-1372.	1.2	61
40	Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus) Tj ETQq0 0	0 fgBT /Ov	verlock 10 Tf
41	Dietary methionine imbalance alters the transcriptional regulation of genes involved in glucose, lipid and amino acid metabolism in the liver of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2016, 454, 56-65.	1.7	61
42	The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture, 2014, 422-423, 47-53.	1.7	60
43	High Dietary Lipids Induce Liver Glucose-6-Phosphatase Expression in Rainbow Trout (Oncorhynchus) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo
44	Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R166-R174.	0.9	57
45	Feeding rainbow trout with a lipid-enriched diet: effects on fatty acid sensing, regulation of food intake, and cellular signaling pathways. Journal of Experimental Biology, 2015, 218, 2610-9.	0.8	56
46	Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes. Cellular Physiology and Biochemistry, 2015, 36, 1084-1100.	1.1	54
47	Postprandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signaling in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 2013, 216, 4483-92.	0.8	53
48	Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (<i>Dicentrarchus labrax</i>) juveniles. British Journal of Nutrition, 2015, 114, 1143-1156.	1.2	53
49	Molecular responses of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates. Aquaculture, 2018, 482, 117-123.	1.7	53
50	Insulin Stimulates Lipogenesis and Attenuates Betaâ€Oxidation in White Adipose Tissue of Fed Rainbow Trout. Lipids, 2011, 46, 189-199.	0.7	52
51	Metabolism and Fatty Acid Profile in Fat and Lean Rainbow Trout Lines Fed with Vegetable Oil: Effect of Carbohydrates. PLoS ONE, 2013, 8, e76570.	1.1	52
52	Glucose metabolism and gene expression in juvenile zebrafish (<i>Danio rerio</i>) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life. British Journal of Nutrition, 2015, 113, 403-413.	1.2	52
53	Comparison of Glucose and Lipid Metabolic Gene Expressions between Fat and Lean Lines of Rainbow Trout after a Glucose Load. PLoS ONE, 2014, 9, e105548.	1.1	51
54	Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy, 2012, 8, 364-375.	4.3	47

#	Article	IF	CITATIONS
55	Effects of fish oil replacement by a vegetable oil blend on digestibility, postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (<i>Dicentrarchus labrax</i>) juveniles. Aquaculture Nutrition, 2015, 21, 592-603.	1.1	47
56	Postprandial Regulation of Growth- and Metabolism-Related Factors in Zebrafish. Zebrafish, 2013, 10, 237-248.	0.5	46
57	Nutritional regulation of glucokinase: a cross-species story. Nutrition Research Reviews, 2014, 27, 21-47.	2.1	46
58	New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annual Review of Animal Biosciences, 2019, 7, 195-220.	3.6	46
59	Metabolic consequences of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss. BMC Genomics, 2014, 15, 70.	1.2	45
60	Dietary carbohydrate and lipid sources affect differently the oxidative status of European sea bass (<i>Dicentrarchus labrax</i>) juveniles. British Journal of Nutrition, 2015, 114, 1584-1593.	1.2	45
61	Ontogenesis of expression of metabolic genes and microRNAs in rainbow trout alevins during the transition from the endogenous to the exogenous feeding period. Journal of Experimental Biology, 2013, 216, 1597-608.	0.8	43
62	Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles. Fish Physiology and Biochemistry, 2016, 42, 203-217.	0.9	42
63	Muscle catabolic capacities and global hepatic epigenome are modified in juvenile rainbow trout fed different vitamin levels at first feeding. Aquaculture, 2017, 468, 515-523.	1.7	42
64	Cloning and tissue distribution of a carnitine palmitoyltransferase I gene in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 139-151.	0.7	41
65	Effects of insulin infusion on glucose homeostasis and glucose metabolism in rainbow trout fed a high-carbohydrate diet. Journal of Experimental Biology, 2010, 213, 4151-4157.	0.8	40
66	Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 169, 16-24.	0.7	40
67	Glucose homeostasis is impaired by a paradoxical interaction between metformin and insulin in carnivorous rainbow trout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1769-R1776.	0.9	39
68	A comparative study of the metabolic response in rainbow trout and Nile tilapia to changes in dietary macronutrient composition. British Journal of Nutrition, 2013, 109, 816-826.	1.2	39
69	Response of hexokinase enzymes and the insulin system to dietary carbohydrates in the common carp,Cyprinus carpio. Reproduction, Nutrition, Development, 2004, 44, 233-242.	1.9	37
70	Glucose overload in yolk has little effects on the long term modulation of carbohydrate metabolic genes in zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2014, 217, 1139-49.	0.8	37
71	Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 164, 417-427.	0.8	36
72	Looking at the metabolic consequences of the colchicine-based in vivo autophagic flux assay. Autophagy, 2016, 12, 343-356.	4.3	35

#	Article	IF	CITATIONS
73	High-glucose feeding of gilthead seabream (Sparus aurata) larvae: Effects on molecular and metabolic pathways. Aquaculture, 2016, 451, 241-253.	1.7	35
74	Regulation of de novo hepatic lipogenesis by insulin infusion in rainbow trout fed a high-carbohydrate diet1. Journal of Animal Science, 2011, 89, 3079-3088.	0.2	34
75	Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (<i>Sparus aurata</i>) Juveniles. Lipids, 2016, 51, 743-755.	0.7	34
76	Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles. Fish Physiology and Biochemistry, 2019, 45, 681-695.	0.9	34
77	Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using 14C-starch. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 201, 189-199.	0.8	33
78	High Dietary Lipid Level Is Associated with Persistent Hyperglycaemia and Downregulation of Muscle Akt-mTOR Pathway in Senegalese Sole (Solea senegalensis). PLoS ONE, 2014, 9, e102196.	1.1	32
79	Insulin regulates lipid and glucose metabolism similarly in two lines of rainbow trout divergently selected for muscle fat content. General and Comparative Endocrinology, 2014, 204, 49-59.	0.8	31
80	CYP2D6 polymorphism in a Gabonese population: contribution of the CYP2D6*2 and CYP2D6*17 alleles to the high prevalence of the intermediate metabolic phenotype. British Journal of Clinical Pharmacology, 1999, 47, 121-124.	1.1	30
81	How Tom Moon's research highlighted the question of glucose tolerance in carnivorous fish. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 199, 43-49.	0.7	30
82	DNA haplotype-dependent differences in the amino acid sequence of debrisoquine 4-hydroxylase (CYP2D6): evidence for two major allozymes in extensive metabolisers. Human Genetics, 1994, 94, 401-6.	1.8	29
83	Liver and intestine oxidative status of gilthead sea bream fed vegetable oil and carbohydrate rich diets. Aquaculture, 2016, 464, 665-672.	1.7	29
84	Evolutionary history of glucose-6-phosphatase encoding genes in vertebrate lineages: towards a better understanding of the functions of multiple duplicates. BMC Genomics, 2017, 18, 342.	1.2	29
85	Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish. Molecular Biology and Evolution, 2020, 37, 2887-2899.	3.5	29
86	Effect of acute and chronic insulin administrations on major factors involved in the control of muscle protein turnover in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2011, 172, 363-370.	0.8	28
87	Regulation by Dietary Carbohydrates of Intermediary Metabolism in Liver and Muscle of Two Isogenic Lines of Rainbow Trout. Frontiers in Physiology, 2018, 9, 1579.	1.3	28
88	Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (<i>Oncorhynchus mykiss</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1231-R1238.	0.9	27
89	The concentration of plasma metabolites varies throughout reproduction and affects offspring number in wild brown trout (Salmo trutta). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 184, 90-96.	0.8	27
90	Long-term programming effect of early hypoxia and high carbohydrate diet at first-feeding on glucose metabolism in rainbow trout juveniles. Journal of Experimental Biology, 2017, 220, 3686-3694.	0.8	27

#	Article	IF	CITATIONS
91	DNA methylation of the promoter region of bnip3 and bnip3l genes induced by metabolic programming. BMC Genomics, 2018, 19, 677.	1.2	27
92	Rainbow trout prefer diets rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Physiology and Behavior, 2020, 213, 112692.	1.0	27
93	Response of hepatic lipid and glucose metabolism to a mixture or single fatty acids: Possible presence of fatty acid-sensing mechanisms. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 164, 241-248.	0.8	26
94	Effects of alternate feeding with different lipid sources on fatty acid composition and bioconversion in European sea bass (Dicentrarchus labrax). Aquaculture, 2016, 464, 28-36.	1.7	26
95	Hepatic glucose metabolic responses to digestible dietary carbohydrates in two isogenic lines of rainbow trout. Biology Open, 2018, 7, .	0.6	26
96	Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiological Genomics, 2019, 51, 411-431.	1.0	26
97	Glucose metabolic gene expression in growth hormone transgenic coho salmon. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 170, 38-45.	0.8	25
98	Dietary methionine deficiency affects oxidative status, mitochondrial integrity and mitophagy in the liver of rainbow trout (Oncorhynchus mykiss). Scientific Reports, 2018, 8, 10151.	1.6	25
99	Evolutionary history of DNA methylation related genes in chordates: new insights from multiple whole genome duplications. Scientific Reports, 2020, 10, 970.	1.6	24
100	Exposure to an acute hypoxic stimulus during early life affects the expression of glucose metabolism-related genes at first-feeding in trout. Scientific Reports, 2017, 7, 363.	1.6	23
101	Long-term feeding a plant-based diet devoid of marine ingredients strongly affects certain key metabolic enzymes in the rainbow trout liver. Fish Physiology and Biochemistry, 2016, 42, 771-785.	0.9	22
102	Glucose metabolism ontogenesis in rainbow trout (<i>Oncorhynchus mykiss</i>) in the light of the recently sequenced genome: new tools for intermediary metabolism programming. Journal of Experimental Biology, 2016, 219, 734-43.	0.8	22
103	Eating for two: Consequences of parental methionine nutrition on offspring metabolism in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2017, 471, 80-91.	1.7	22
104	Dietary fat level modifies the expression of hepatic genes in juvenile rainbow trout (Oncorhynchus) Tj ETQq0 C) 0 rgBT /Ov	erlock 10 Tf 5
105	Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182, 507-516.	0.7	18
106	Exploring the Impact of a Low-Protein High-Carbohydrate Diet in Mature Broodstock of a Glucose-Intolerant Teleost, the Rainbow Trout. Frontiers in Physiology, 2020, 11, 303.	1.3	18
107	Macronutrient Composition of the Diet Affects the Feeding-Mediated Down Regulation of Autophagy in Muscle of Rainbow Trout (O. mykiss). PLoS ONE, 2013, 8, e74308.	1.1	18
108	Ontogenesis of metabolic gene expression in whiteleg shrimp (Litopenaeus vannamei): New molecular tools for programming in the future. Aquaculture, 2017, 479, 142-149.	1.7	15

#	Article	IF	CITATIONS
109	A reassessment of the carnivorous status of salmonids: Hepatic glucokinase is expressed in wild fish in Kerguelen Islands. Science of the Total Environment, 2018, 612, 276-285.	3.9	15
110	Composition of Intestinal Microbiota in Two Lines of Rainbow Trout (Oncorhynchus Mykiss) Divergently Selected for Muscle Fat Content. Open Microbiology Journal, 2018, 12, 308-320.	0.2	15
111	The Autophagic Flux Inhibitor Bafilomycine A1 Affects the Expression of Intermediary Metabolism-Related Genes in Trout Hepatocytes. Frontiers in Physiology, 2019, 10, 263.	1.3	15
112	Postprandial kinetics of gene expression of proteins involved in the digestive process in rainbow trout (O. mykiss) and impact of diet composition. Fish Physiology and Biochemistry, 2016, 42, 1187-1202.	0.9	14
113	Induction of glucokinase in chicken liver by dietary carbohydrates. General and Comparative Endocrinology, 2008, 158, 173-177.	0.8	13
114	Hepatic fatty acid biosynthesis is more responsive to protein than carbohydrate in rainbow trout during acute stimulations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R74-R86.	0.9	13
115	Influence of Dietary Astaxanthin on the Hepatic Oxidative Stress Response Caused by Episodic Hyperoxia in Rainbow Trout. Antioxidants, 2019, 8, 626.	2.2	13
116	Positive impact of moderate food restriction on reproductive success of the rainbow trout Oncorhynchus mykiss. Aquaculture, 2019, 502, 280-288.	1.7	13
117	Positive Impact of Thermal Manipulation During Embryogenesis on Foie Gras Production in Mule Ducks. Frontiers in Physiology, 2019, 10, 1495.	1.3	12
118	Glucose Injection Into Yolk Positively Modulates Intermediary Metabolism and Growth Performance in Juvenile Nile Tilapia (Oreochromis niloticus). Frontiers in Physiology, 2020, 11, 286.	1.3	12
119	Modeling of autophagy-related gene expression dynamics during long term fasting in European eel (Anguilla anguilla). Scientific Reports, 2017, 7, 17896.	1.6	10
120	Higher glycolytic capacities in muscle of carnivorous rainbow trout juveniles after high dietary carbohydrate stimulus at first feeding. Nutrition and Metabolism, 2019, 16, 77.	1.3	10
121	Food Shortage Causes Differential Effects on Body Composition and Tissue-Specific Gene Expression in Salmon Modified for Increased Growth Hormone Production. Marine Biotechnology, 2015, 17, 753-767.	1.1	9
122	Programming of the glucose metabolism in rainbow trout juveniles after chronic hypoxia at hatching stage combined with a high dietary carbohydrate: Protein ratios intake at first-feeding. Aquaculture, 2018, 488, 1-8.	1.7	9
123	Early feeding with hyperglucidic diet during fry stage exerts long-term positive effects on nutrient metabolism and growth performance in adult tilapia (<i>Oreochromis niloticus</i>). Journal of Nutritional Science, 2020, 9, e41.	0.7	9
124	Nutritional history does not modulate hepatic oxidative status of European sea bass (Dicentrarchus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf !
125	Impact of Dietary Carbohydrate/Protein Ratio on Hepatic Metabolism in Land-Locked Atlantic Salmon (Salmo salar L) Frontiers in Physiology, 2018, 9, 1751	1.3	8

Hepatic Glycerol Metabolism-Related Genes in Carnivorous Rainbow Trout (Oncorhynchus mykiss):
Insights Into Molecular Characteristics, Ontogenesis, and Nutritional Regulation. Frontiers in
1.3
Physiology, 2020, 11, 882.

#	Article	IF	CITATIONS
127	Why Do Some Rainbow Trout Genotypes Grow Better With a Complete Plant-Based Diet? Transcriptomic and Physiological Analyses on Three Isogenic Lines. Frontiers in Physiology, 2021, 12, 732321.	1.3	8
128	Metabolic programming in juveniles of the whiteleg shrimp (Litopenaeus vannamei) linked to an early feed restriction at the post-larval stage. Aquaculture, 2018, 495, 328-338.	1.7	6
129	Early feeding of rainbow trout (Oncorhynchus mykiss) with methionine deficient diet over a two-week period: consequences for liver mitochondria in juveniles. Journal of Experimental Biology, 2019, 222, .	0.8	6
130	Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. Frontiers in Animal Science, 2022, 2, .	0.8	6
131	Roles of Gender, Age at Onset and Environmental Risk in the Frequency of <i>CYP2D6-</i> Deficient Alleles in Patients with Parkinson's Disease. European Neurology, 2002, 48, 114-115.	0.6	5
132	Experimental evidence of population differences in reproductive investment conditional on environmental stochasticity. Science of the Total Environment, 2016, 541, 143-148.	3.9	5
133	Nutritional regulation of glucose metabolism-related genes in the emerging teleost model Mexican tetra surface fish: a first exploration. Royal Society Open Science, 2020, 7, 191853.	1.1	5
134	Short-Term Effect of a Low-Protein High-Carbohydrate Diet on Mature Female and Male, and Neomale Rainbow Trout. International Journal of Molecular Sciences, 2021, 22, 6149.	1.8	5
135	Modulation of Energy Metabolism and Epigenetic Landscape in Rainbow Trout Fry by a Parental Low Protein/High Carbohydrate Diet. Biology, 2021, 10, 585.	1.3	5
136	Ontogeny of hepatic metabolism in mule ducks highlights different gene expression profiles between carbohydrate and lipid metabolic pathways. BMC Genomics, 2020, 21, 742.	1.2	4
137	The rainbow trout genome, an important landmark forÂaquaculture and genomeÂevolution. , 2016, , 21-43.		3
138	Long-term impact of a 4-day feed restriction at the protozoea stage on metabolic gene expressions of whiteleg shrimp (Litopenaeus vannamei). PeerJ, 2020, 8, e8715.	0.9	3
139	No adverse effect of a maternal high carbohydrate diet on their offspring, in rainbow trout (<i>Oncorhynchus mykiss</i>). PeerJ, 2021, 9, e12102.	0.9	2
140	Impacts of Embryonic Thermal Programming on the Expression of Genes Involved in Foie gras Production in Mule Ducks. Frontiers in Physiology, 2021, 12, 779689.	1.3	2
141	On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax). Frontiers in Marine Science, 2022, 9, .	1.2	2
142	Hepatic Global DNA Hypomethylation Phenotype in Rainbow Trout Fed Diets Varying in Carbohydrate to Protein Ratio. Journal of Nutrition, 2022, 152, 29-39.	1.3	1
143	On the Utilization of Dietary Glycerol in Carnivorous Fish - Part I: Insights Into Hepatic Carbohydrate Metabolism of Juvenile Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus) Tj ETQq1 I	01728431	4 rgBT /Over
144	Molecular genetics of cytochrome P450 IID. Clinical Reviews in Allergy and Immunology, 1995, 13, 211-221.	2.9	1