Aihua Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540380/publications.pdf

Version: 2024-02-01

		394421	477307
30	1,021	19	29
papers	citations	h-index	g-index
30	30	30	1516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111464.	5.0	27
2	Fe ₃ O ₄ Magnetic Cores Coated with Metal–Organic Framework Shells as Collectable Composite Nanoparticle Vehicles for Sustained Release of the Pesticide Imidacloprid. ACS Applied Nano Materials, 2021, 4, 5864-5870.	5.0	23
3	Effect of λ-Cyhalothrin-Loaded Polydopamine Microcapsule Suspensions on Stress Defenses in the Chinese Mitten Crab, Eriocheir sinensis. ACS Agricultural Science and Technology, 2021, 1, 303-311.	2.3	1
4	Effect of Shiga Toxin on Inhomogeneous Biological Membrane Structure Determined by Small-Angle Scattering. Applied Sciences (Switzerland), 2021, 11, 6965.	2.5	1
5	Mitochondrial Voltage-Dependent Anion Channel 1–Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35281-35293.	8.0	28
6	A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS Applied Bio Materials, 2021, 4, 8277-8290.	4.6	11
7	Eco-friendly Water-Based λ-Cyhalothrin Polydopamine Microcapsule Suspension with High Adhesion on Leaf for Reducing Pesticides Loss. Journal of Agricultural and Food Chemistry, 2020, 68, 12549-12557.	5.2	20
8	Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125266.	4.7	39
9	Singleâ€Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. ChemBioChem, 2020, 21, 2467-2473.	2.6	14
10	Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1–hexokinase-II complex. Journal of Materials Chemistry B, 2019, 7, 4706-4716.	5 . 8	63
11	pH Responsiveness of Hexosomes and Cubosomes for Combined Delivery of <i>Brucea javanica</i> Oil and Doxorubicin. Langmuir, 2019, 35, 14532-14542.	3.5	79
12	Loading Psoralen into liposomes to enhance its stimulatory effect on the proliferation and differentiation of mouse calvarias osteoblasts. Journal of Dispersion Science and Technology, 2019, 40, 1531-1538.	2.4	2
13	Polydopamine as the Antigen Delivery Nanocarrier for Enhanced Immune Response in Tumor Immunotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 2330-2342.	5. 2	23
14	In situ phase transition of microemulsions for parenteral injection yielding lyotropic liquid crystalline carriers of the antitumor drug bufalin. Colloids and Surfaces B: Biointerfaces, 2019, 173, 217-225.	5.0	33
15	Preparation of an Environmentally Friendly Formulation of the Insecticide Nicotine Hydrochloride through Encapsulation in Chitosan/Tripolyphosphate Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 1067-1074.	5.2	37
16	Hyaluronic acid-coated liposome for active targeting on CD44 expressing tumors. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	9
17	Construction and Characterization of a Novel Sustained-Release Delivery System for Hydrophobic Pesticides Using Biodegradable Polydopamine-Based Microcapsules. Journal of Agricultural and Food Chemistry, 2018, 66, 6262-6268.	5.2	39
18	Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids and Surfaces B: Biointerfaces, 2017, 153, 310-319.	5.0	50

#	Article	IF	CITATIONS
19	Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Advances in Colloid and Interface Science, 2017, 249, 331-345.	14.7	173
20	Folate receptor targeted bufalin/ \hat{l}^2 -cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. Materials Science and Engineering C, 2017, 78, 609-618.	7.3	22
21	Brucea javanica oil-loaded nanostructure lipid carriers (BJO NLCs): Preparation, characterization and in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 312-319.	4.7	22
22	Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release. Colloids and Surfaces B: Biointerfaces, 2016, 145, 95-103.	5.0	38
23	Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution. Journal of Colloid and Interface Science, 2016, 481, 201-209.	9.4	29
24	Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids and Surfaces B: Biointerfaces, 2016, 140, 74-82.	5.0	73
25	Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. Journal of Materials Chemistry B, 2015, 3, 7734-7744.	5.8	68
26	Interaction Between Surfactin and Bovine Serum Albumin. Journal of Dispersion Science and Technology, 2014, 35, 48-55.	2.4	4
27	Insights into the Interactions among Surfactin, Betaines, and PAM: Surface Tension, Small-Angle Neutron Scattering, and Small-Angle X-ray Scattering Study. Langmuir, 2014, 30, 3363-3372.	3.5	19
28	Nanoscale Interfacial Activity of the Natural Lipopeptide, [Asp ₁ , Glu ₅] Surfactin 16, and DMPC in Mixed Monolayer. Chinese Journal of Chemistry, 2012, 30, 2869-2873.	4.9	0
29	Interaction between the Natural Lipopeptide [Glu ₁ , Asp ₅] Surfactin-C15 and Hemoglobin in Aqueous Solution. Biomacromolecules, 2010, 11, 593-599.	5.4	26
30	Micellization Activity of the Natural Lipopeptide [Glu ₁ , Asp ₅] Surfactin-C15 in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 2712-2718.	2.6	48