Yang-Fan Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540274/publications.pdf Version: 2024-02-01

YANG-FAN XII

#	Article	IF	CITATIONS
1	Solar Urea: Towards a Sustainable Fertilizer Industry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
2	Perovskite, the Chameleon CO2 Photocatalyst. Cell Reports Physical Science, 2021, 2, 100300.	2.8	4
3	Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran. Nature Communications, 2021, 12, 1202.	5.8	58
4	A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Science China Materials, 2021, 64, 2212-2220.	3.5	21
5	High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, 11, 5149.	5.8	82
6	How to make an efficient gas-phase heterogeneous CO ₂ hydrogenation photocatalyst. Energy and Environmental Science, 2020, 13, 3054-3063.	15.6	52
7	Suppressing Interfacial Charge Recombination in Electronâ€Transport‣ayerâ€Free Perovskite Solar Cells to Give an Efficiency Exceeding 21 %. Angewandte Chemie, 2020, 132, 21166-21173.	1.6	36
8	Suppressing Interfacial Charge Recombination in Electronâ€Transport‣ayerâ€Free Perovskite Solar Cells to Give an Efficiency Exceeding 21 %. Angewandte Chemie - International Edition, 2020, 59, 20980-20987.	7.2	65
9	Black indium oxide a photothermal CO2 hydrogenation catalyst. Nature Communications, 2020, 11, 2432.	5.8	192
10	Synergizing Photo-Thermal H2 and Photovoltaics into a Concentrated Sunlight Use. IScience, 2020, 23, 101012.	1.9	32
11	Solvent selection and Pt decoration towards enhanced photocatalytic CO ₂ reduction over CsPbBr ₃ perovskite single crystals. Sustainable Energy and Fuels, 2020, 4, 2249-2255.	2.5	47
12	A facile method to fabricate high-quality perovskite nanocrystals based on single crystal powder. Nano Research, 2019, 12, 2640-2645.	5.8	12
13	Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications. Accounts of Chemical Research, 2019, 52, 633-644.	7.6	16
14	Constructing CsPbBr _x I _{3â^'x} nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity. Journal of Materials Chemistry A, 2019, 7, 5409-5415.	5.2	34
15	Branched titania nanostructures for efficient energy conversion and storage: A review on design strategies, structural merits and multifunctionalities. Nano Energy, 2019, 62, 791-809.	8.2	41
16	Hierarchical CsPbBr ₃ nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 13762-13769.	5.2	115
17	A laminar MAPbBr3/MAPbBr3â^'xlx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance. Journal of Materials Chemistry C, 2019, 7, 5670-5676.	2.7	20
18	Porous ZnO@ZnSe nanosheet array for photoelectrochemical reduction of CO2. Electrochimica Acta, 2018, 274, 298-305.	2.6	32

Yang-Fan Xu

#	Article	IF	CITATIONS
19	Synthesis and Photocatalytic Application of Stable Leadâ€Free Cs ₂ AgBiBr ₆ Perovskite Nanocrystals. Small, 2018, 14, e1703762.	5.2	443
20	CsPbBr ₃ Nanocrystal/MO ₂ (M = Si, Ti, Sn) Composites: Insight into Charge-Carrier Dynamics and Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2018, 10, 42301-42309.	4.0	66
21	All-Inorganic Lead-Free Cs ₂ PdX ₆ (X = Br, I) Perovskite Nanocrystals with Single Unit Cell Thickness and High Stability. ACS Energy Letters, 2018, 3, 2613-2619.	8.8	143
22	Core@Shell CsPbBr ₃ @Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO ₂ Reduction. ACS Energy Letters, 2018, 3, 2656-2662.	8.8	425
23	Amorphousâ€TiO ₂ â€Encapsulated CsPbBr ₃ Nanocrystal Composite Photocatalyst with Enhanced Charge Separation and CO ₂ Fixation. Advanced Materials Interfaces, 2018, 5, 1801015.	1.9	125
24	Conformal coating of ultrathin metal-organic framework on semiconductor electrode for boosted photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018, 237, 9-17.	10.8	82
25	Enhanced Solar-Driven Gaseous CO ₂ Conversion by CsPbBr ₃ Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst. ACS Applied Energy Materials, 2018, 1, 5083-5089.	2.5	135
26	Large-grained perovskite films via FA x MA 1â^'x Pb(l x Br 1â^'x) 3 single crystal precursor for efficient solar cells. Nano Energy, 2017, 34, 264-270.	8.2	35
27	A CsPbBr ₃ Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 5660-5663.	6.6	946
28	Self-supported NiMoP ₂ nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7191-7199.	5.2	168
29	Large-Area Synthesis of a Ni ₂ P Honeycomb Electrode for Highly Efficient Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 32812-32819.	4.0	62
30	3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimonyâ€Doped Tin Oxide for Photoelectrochemical Water Splitting. ChemSusChem, 2016, 9, 3012-3018.	3.6	17
31	Toward High Performance Photoelectrochemical Water Oxidation: Combined Effects of Ultrafine Cobalt Iron Oxide Nanoparticle. Advanced Functional Materials, 2016, 26, 4414-4421.	7.8	97
32	Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy and Environmental Science, 2016, 9, 1468-1475.	15.6	437
33	In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. Journal of Materials Chemistry A, 2016, 4, 5124-5129.	5.2	51
34	Achieving high-performance planar perovskite solar cell with Nb-doped TiO ₂ compact layer by enhanced electron injection and efficient charge extraction. Journal of Materials Chemistry A, 2016, 4, 5647-5653.	5.2	163
35	Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl ₄ Treated 3D Antimonyâ€Doped SnO ₂ Macropore/Branched αâ€Fe ₂ O ₃ Nanorod Heterojunction Photoanode. Advanced Science, 2015, 2, 1500049.	5.6	65
36	Water Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl ₄ Treated 3D Antimonyâ€Doped SnO ₂ Macropore/Branched αâ€Fe ₂ O ₃ Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015). Advanced Science, 2015, 2, .	5.6	0

Yang-Fan Xu

#	Article	IF	CITATIONS
37	Improving the Extraction of Photogenerated Electrons with SnO ₂ Nanocolloids for Efficient Planar Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 7200-7207.	7.8	194
38	CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy, 2015, 11, 621-630.	8.2	91
39	CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy, 2014, 8, 1-8.	8.2	81
40	Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with Homogeneous or Heterogeneous Compositions for Efficient Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 4816-4821.	7.2	90
41	Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 6437-6445.	6.6	224
42	Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nature Communications, 2014, 5, 3968.	5.8	156
43	Ultra-long anatase TiO2nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 644-649.	15.6	176
44	Recent advances in hierarchical macroporous composite structures for photoelectric conversion. Energy and Environmental Science, 2014, 7, 3887-3901.	15.6	42
45	Trilayered Photoanode of TiO ₂ Nanoparticles on a 1D–3D Nanostructured TiO ₂ -Grown Flexible Ti Substrate for High-Efficiency (9.1%) Dye-Sensitized Solar Cells with Unprecedentedly High Photocurrent Density. Journal of Physical Chemistry C, 2014, 118, 16426-16432.	1.5	46
46	Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells. Scientific Reports, 2013, 3, 1892.	1.6	111
47	Fabrication of a double layered photoanode consisting of SnO2 nanofibers and nanoparticles for efficient dye-sensitized solar cells. RSC Advances, 2013, 3, 13804.	1.7	28
48	Hierarchical Zn2SnO4 nanosheets consisting of nanoparticles for efficient dye-sensitized solar cells. Nano Energy, 2013, 2, 1287-1293.	8.2	42
49	Synthesis and photovoltaic performance of dihydrodibenzoazepine-based sensitizers with additional lateral anchor. Dyes and Pigments, 2013, 99, 1072-1081.	2.0	13
50	Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells. Nanoscale, 2013, 5, 5940.	2.8	65
51	Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells. Scientific Reports, 2013, 3, 1352.	1.6	291
52	A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells. Nanoscale, 2013, 5, 4362.	2.8	91
53	Macroporous SnO ₂ Synthesized via a Template-Assisted Reflux Process for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5105-5111.	4.0	61