Tianjiao Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540215/publications.pdf Version: 2024-02-01

ΤιλΝυλο Ιι

#	Article	IF	CITATIONS
1	Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting. Science China Life Sciences, 2022, 65, 328-340.	2.3	16
2	Using scaffolds as drug delivery systems to treat bone tumor. Nanotechnology, 2022, 33, 212002.	1.3	7
3	Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. Journal of Nanobiotechnology, 2022, 20, 140.	4.2	10
4	Nanotechnological strategies for prostate cancer imaging and diagnosis. Science China Chemistry, 2022, 65, 1498-1514.	4.2	8
5	Biodegradable magnesium implants: a potential scaffold for bone tumor patients. Science China Materials, 2021, 64, 1007-1020.	3.5	28
6	Enhanced Antitumor Immune Responses via a Self-Assembled Carrier-Free Nanovaccine. Nano Letters, 2021, 21, 3965-3973.	4.5	20
7	Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharmaceutica Sinica B, 2021, 11, 2114-2135.	5.7	30
8	Modular ketal-linked prodrugs and biomaterials enabled by organocatalytic transisopropenylation of alcohols. Nature Communications, 2021, 12, 5532.	5.8	15
9	Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel. Nature Biomedical Engineering, 2021, 5, 1099-1109.	11.6	30
10	Tumor Microenvironment–Responsive Peptide-Based Supramolecular Drug Delivery System. Frontiers in Chemistry, 2020, 8, 549.	1.8	23
11	NF-l̂ºB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. Journal of Neuroinflammation, 2020, 17, 225.	3.1	36
12	Light-triggered release of conventional local anesthetics from a macromolecular prodrug for on-demand local anesthesia. Nature Communications, 2020, 11, 2323.	5.8	40
13	Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. Nano Letters, 2020, 20, 5465-5472.	4.5	37
14	Functionalized Multiarmed Polycaprolactones as Biocompatible Tissue Adhesives. ACS Applied Materials & Interfaces, 2020, 12, 17314-17320.	4.0	19
15	Functional peptide-based drug delivery systems. Journal of Materials Chemistry B, 2020, 8, 6517-6529.	2.9	42
16	Editorial: Supramolecular Assembly Based Functional Nanostructures for Biomedical Applications. Frontiers in Chemistry, 2020, 8, 637926.	1.8	1
17	Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. Advanced Materials, 2019, 31, e1804395.	11.1	62
18	The Duration of Nerve Block from Local Anesthetic Formulations in Male and Female Rats. Pharmaceutical Research, 2019, 36, 179.	1.7	4

Τιανιίαο Ji

#	Article	IF	CITATIONS
19	Nanoscale systems for local drug delivery. Nano Today, 2019, 28, 100765.	6.2	46
20	Reshaping Prostate Tumor Microenvironment To Suppress Metastasis <i>via</i> Cancer-Associated Fibroblast Inactivation with Peptide-Assembly-Based Nanosystem. ACS Nano, 2019, 13, 12357-12371.	7.3	107
21	Tumor-Specific Silencing of Tissue Factor Suppresses Metastasis and Prevents Cancer-Associated Hypercoagulability. Nano Letters, 2019, 19, 4721-4730.	4.5	48
22	Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nature Communications, 2019, 10, 2566.	5.8	47
23	Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nature Communications, 2019, 10, 804.	5.8	67
24	Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia. ACS Nano, 2019, 13, 18-25.	7.3	25
25	Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy. Nano Letters, 2018, 18, 3250-3258.	4.5	255
26	Chaperonin-GroEL as a Smart Hydrophobic Drug Delivery and Tumor Targeting Molecular Machine for Tumor Therapy. Nano Letters, 2018, 18, 921-928.	4.5	44
27	Suppression of Tumor Energy Supply by Liposomal Nanoparticle-Mediated Inhibition of Aerobic Glycolysis. ACS Applied Materials & Interfaces, 2018, 10, 2347-2353.	4.0	35
28	Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydrate Polymers, 2018, 195, 311-320.	5.1	68
29	BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging. Acta Biomaterialia, 2018, 72, 287-294.	4.1	22
30	Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin. Nano Letters, 2018, 18, 32-37.	4.5	29
31	Predicting the tissue depth for remote triggering of drug delivery systems. Journal of Controlled Release, 2018, 286, 55-63.	4.8	8
32	Enhanced Triggering of Local Anesthetic Particles by Photosensitization and Photothermal Effect Using a Common Wavelength. Nano Letters, 2017, 17, 7138-7145.	4.5	22
33	Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS Nano, 2017, 11, 8103-8113.	7.3	135
34	Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomedical Engineering, 2017, 1, 667-679.	11.6	132
35	Designing Liposomes To Suppress Extracellular Matrix Expression To Enhance Drug Penetration and Pancreatic Tumor Therapy. ACS Nano, 2017, 11, 8668-8678.	7.3	175
36	Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancerâ€Associated Fibroblast Activation. Angewandte Chemie, 2016, 128, 1062-1067.	1.6	22

Τιανιίαο Ji

#	Article	IF	CITATIONS
37	Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancerâ€Associated Fibroblast Activation. Angewandte Chemie - International Edition, 2016, 55, 1050-1055.	7.2	153
38	Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials, 2016, 102, 187-197.	5.7	208
39	An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced Drug Perfusion and Efficacy in Pancreatic Cancer. ACS Applied Materials & Interfaces, 2016, 8, 3438-3445.	4.0	119
40	Improvement of the in vitro safety profile and cytoprotective efficacy of amifostine against chemotherapy by PEGylation strategy. Biochemical Pharmacology, 2016, 108, 11-21.	2.0	14
41	pHLIP-mediated targeting of truncated tissue factor to tumor vessels causes vascular occlusion and impairs tumor growth. Oncotarget, 2015, 6, 23523-23532.	0.8	29
42	Peptide Assembly Integration of Fibroblastâ€Targeting and Cellâ€Penetration Features for Enhanced Antitumor Drug Delivery. Advanced Materials, 2015, 27, 1865-1873.	11.1	158
43	Fine-Tuned H-Ferritin Nanocage with Multiple Gold Clusters as Near-Infrared Kidney Specific Targeting Nanoprobe. Bioconjugate Chemistry, 2015, 26, 193-196.	1.8	30
44	"Triple-Punch―Strategy for Triple Negative Breast Cancer Therapy with Minimized Drug Dosage and Improved Antitumor Efficacy. ACS Nano, 2015, 9, 1367-1378.	7.3	125
45	Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicology Letters, 2015, 237, 61-71.	0.4	100
46	Improvement of Stability and Efficacy of C16Y Therapeutic Peptide via Molecular Self-Assembly into Tumor-Responsive Nanoformulation. Molecular Cancer Therapeutics, 2015, 14, 2390-2400.	1.9	26
47	Multiple Layerâ€byâ€Layer Lipidâ€Polymer Hybrid Nanoparticles for Improved FOLFIRINOX Chemotherapy in Pancreatic Tumor Models. Advanced Functional Materials, 2015, 25, 788-798.	7.8	96
48	Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging. Journal of Controlled Release, 2014, 177, 11-19.	4.8	62
49	A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35, 2383-2390.	5.7	1,352
50	Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano, 2014, 8, 11529-11542.	7.3	220
51	Dopamine coating as a general and facile route to biofunctionalization of superparamagnetic Fe3O4 nanoparticles for magnetic separation of proteins. RSC Advances, 2014, 4, 6657.	1.7	26
52	Neuropilin-1-Targeted Gold Nanoparticles Enhance Therapeutic Efficacy of Platinum(IV) Drug for Prostate Cancer Treatment. ACS Nano, 2014, 8, 4205-4220.	7.3	146
53	Using Functional Nanomaterials to Target and Regulate the Tumor Microenvironment: Diagnostic and Therapeutic Applications. Advanced Materials, 2013, 25, 3508-3525.	11.1	154
54	Tumor Fibroblast Specific Activation of a Hybrid Ferritin Nanocageâ€Based Optical Probe for Tumor Microenvironment Imaging. Small, 2013, 9, 2427-2431.	5.2	45