
David Mesguich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ reactive synthesis of dense nanostructured β-FeSi2 by Spark Plasma Sintering. Journal of Alloys and Compounds, 2022, 902, 163683.	2.8	4
2	Al matrix composites reinforced by in situ synthesized graphene–Cu hybrid layers: interface control by spark plasma sintering conditions. Journal of Materials Science, 2022, 57, 6266-6281.	1.7	0
3	Grafting Copper Atoms and Nanoparticles on Double-Walled Carbon Nanotubes: Application to Catalytic Synthesis of Propargylamine. Langmuir, 2022, 38, 8545-8554.	1.6	4
4	Influence of alloying on the tensile strength and electrical resistivity of silver nanowire: copper composites macroscopic wires. Journal of Materials Science, 2021, 56, 4884-4895.	1.7	5
5	Microstructure and Mechanical Properties of AA7075 Aluminum Alloy Fabricated by Spark Plasma Sintering (SPS). Materials, 2021, 14, 430.	1.3	17
6	Effect of Nanostructuring on the Thermoelectric Properties of \hat{I}^2 -FeSi2. Nanomaterials, 2021, 11, 2852.	1.9	10
7	High Strength-High Conductivity Silver Nanowire-Copper Composite Wires by Spark Plasma Sintering and Wire-Drawing for Non-Destructive Pulsed Fields. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-4.	1.1	1
8	Removable Composite Electrode Made of Silver Nanoparticles on Pyrolyzed Photoresist Film for the Electroreduction of 4-Nitrophenol. Langmuir, 2019, 35, 14194-14202.	1.6	4
9	Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138048.	2.6	15
10	Fast and easy preparation of few-layered-graphene/magnesia powders for strong, hard and electrically conducting composites. Carbon, 2018, 136, 270-279.	5.4	39
11	Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy. Composites Part A: Applied Science and Manufacturing, 2018, 105, 126-137.	3.8	56
12	High strength-high conductivity carbon nanotube-copper wires with bimodal grain size distribution by spark plasma sintering and wire-drawing. Scripta Materialia, 2017, 137, 78-82.	2.6	18
13	High strength – High conductivity double-walled carbon nanotube – Copper composite wires. Carbon, 2016, 96, 212-215.	5.4	65
14	High strength–high conductivity nanostructured copper wires prepared by spark plasma sintering and room-temperature severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 209-213.	2.6	19
15	Dog-bone copper specimens prepared by one-step spark plasma sintering. Journal of Materials Science, 2015, 50, 7364-7373.	1.7	27
16	Influence of crystallinity and particle size on the electrochemical properties of spray pyrolyzed Nd2NiO4+l´ powders. Electrochimica Acta, 2013, 87, 330-335.	2.6	17
17	Supercritical fluid deposition of compositionally uniform yttria stabilized zirconia films. Journal of Supercritical Fluids, 2012, 66, 328-332.	1.6	14
18	Low-Temperature Deposition of Undoped Ceria Thin Films in scCO ₂ As Improved Interlayers for IT-SOFC. Chemistry of Materials, 2011, 23, 5323-5330.	3.2	22

DAVID MESGUICH

#	Article	IF	CITATIONS
19	Doped / Undoped Ceria Buffer Layers for Improved LT SOFC Performances with Pr ₂ NiO _{4+δ} Cathode. ECS Transactions, 2011, 35, 1945-1954.	0.3	3
20	Nanopowder synthesis of the SOFC cathode material Nd2NiO4+δ by ultrasonic spray pyrolysis. Solid State Ionics, 2010, 181, 1015-1023.	1.3	13
21	Particle decoration in super critical fluid to improve the hydrogen sorption cyclability of magnesium. Journal of Alloys and Compounds, 2007, 429, 250-254.	2.8	24