Andrea I Doseff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539965/publications.pdf

Version: 2024-02-01

430874 552781 1,756 28 18 26 citations h-index g-index papers 30 30 30 2814 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ibrutinib Blocks YAP1 Activation and Reverses BRAF Inhibitor Resistance in Melanoma Cells. Molecular Pharmacology, 2022, 101, 1-12.	2.3	5
2	Splicing reprogramming of TRAIL/DISC-components sensitizes lung cancer cells to TRAIL-mediated apoptosis. Cell Death and Disease, 2021, 12, 287.	6.3	17
3	Bioengineering of Genetically Encoded Gene Promoter Repressed by the Flavonoid Apigenin for Constructing Intracellular Sensor for Molecular Events. Biosensors, 2021, 11, 137.	4.7	1
4	Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds. Plant Science, 2020, 291, 110364.	3.6	11
5	Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochemical Pharmacology, 2020, 182, 114259.	4.4	32
6	The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules, 2020, 25, 2477.	3.8	22
7	Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants, 2019, 8, 202.	5.1	63
8	Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants, 2019, 8, 103.	5.1	64
9	Whole-Genome Multi-omic Study of Survival in Patients with Glioblastoma Multiforme. G3: Genes, Genomes, Genetics, 2018, 8, 3627-3636.	1.8	12
10	Genome-Wide TSS Identification in Maize. Methods in Molecular Biology, 2018, 1830, 239-256.	0.9	1
11	MicroRNAs Targeting Caspase-3 and -7 in PANC-1 Cells. International Journal of Molecular Sciences, 2018, 19, 1206.	4.1	26
12	A Maize Gene Regulatory Network for Phenolic Metabolism. Molecular Plant, 2017, 10, 498-515.	8.3	74
13	Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function. International Journal of Molecular Sciences, 2016, 17, 323.	4.1	69
14	Flavones: From Biosynthesis to Health Benefits. Plants, 2016, 5, 27.	3 . 5	209
15	MYB31/MYB42 Syntelogs Exhibit Divergent Regulation of Phenylpropanoid Genes in Maize, Sorghum and Rice. Scientific Reports, 2016, 6, 28502.	3.3	81
16	Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites. Plant Cell, 2015, 27, 3309-3320.	6.6	65
17	Dietary apigenin reduces LPSâ€induced expression of miRâ€155 restoring immune balance during inflammation. Molecular Nutrition and Food Research, 2015, 59, 763-772.	3.3	78
18	Distinct contribution of protein kinase $C\hat{i}$ and protein kinase $C\hat{i}\mu$ in the lifespan and immune response of human blood monocyte subpopulations. Immunology, 2015, 144, 611-620.	4.4	6

#	Article	IF	CITATION
19	Important biological information uncovered in previously unaligned reads from chromatin immunoprecipitation experiments (ChIP-Seq). Scientific Reports, 2015, 5, 8635.	3.3	5
20	Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2153-62.	7.1	115
21	Apigenin induces DNA damage through the PKCl´-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair. Biochemical Pharmacology, 2012, 84, 1571-1580.	4.4	46
22	Flavone deglycosylation increases their antiâ€inflammatory activity and absorption. Molecular Nutrition and Food Research, 2012, 56, 558-569.	3.3	76
23	Molecular Fingerprinting of Hsp27 Antiâ€Apoptotic Activity. FASEB Journal, 2012, 26, 798.13.	0.5	0
24	Identification of Humanâ€Flavonoid Targets Using an Innovative Approach Reveals New Mechanisms Involved in Their Antiâ€Inflammatory Activities. FASEB Journal, 2012, 26, 251.5.	0.5	0
25	Apigenin Blocks Lipopolysaccharide-Induced Lethality In Vivo and Proinflammatory Cytokines Expression by Inactivating NF-κB through the Suppression of p65 Phosphorylation. Journal of Immunology, 2007, 179, 7121-7127.	0.8	301
26	Binding of Caspase-3 Prodomain to Heat Shock Protein 27 Regulates Monocyte Apoptosis by Inhibiting Caspase-3 Proteolytic Activation. Journal of Biological Chemistry, 2007, 282, 25088-25099.	3.4	148
27	Apigenin-induced-apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells. Biochemical Pharmacology, 2006, 72, 681-692.	4.4	144
28	Regulation of Monocyte Apoptosis by the Protein Kinase CÎ-dependent Phosphorylation of Caspase-3. Journal of Biological Chemistry, 2005, 280, 17371-17379.	3.4	80