
Lei Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition metal-free photocatalytic reductive deuteration of ketone derivatives. Green Synthesis and Catalysis, 2023, 4, 253-257.	3.7	3
2	Nickel-Catalyzed Regiodivergent Asymmetric Cycloadditions of α,β-Unsaturated Carbonyl Compounds. CCS Chemistry, 2022, 4, 3122-3133.	4.6	14
3	Photocatalyzed site-selective C(sp3)-H sulfonylation of toluene derivatives and cycloalkanes with inorganic sulfinates. Chinese Journal of Catalysis, 2022, 43, 564-570.	6.9	16
4	Photocatalytic three-component asymmetric sulfonylation via direct C(sp3)-H functionalization. Nature Communications, 2021, 12, 2377.	5.8	95
5	Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides. Nature Communications, 2021, 12, 2894.	5.8	58
6	The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for Câ^'H Functionalization of Alkanes and Cycloalkanes. European Journal of Organic Chemistry, 2021, 2021, 5545-5556.	1.2	25
7	Visible-Light-Promoted Asymmetric Catalysis by Chiral Complexes of First-Row Transition Metals. Synthesis, 2021, 53, 1570-1583.	1.2	14
8	Copper-catalyzed aerobic asymmetric cross-dehydrogenative coupling of C(sp ³)–H bonds driven by visible light. Green Chemistry, 2020, 22, 4597-4603.	4.6	37
9	Photocatalytic enantioselective α-aminoalkylation of acyclic imine derivatives by a chiral copper catalyst. Nature Communications, 2019, 10, 3804.	5.8	74
10	Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nature Catalysis, 2019, 2, 1016-1026.	16.1	154
11	Visible-Light-Induced[3+2] Annulation of Cyclopropylamines with 1,2-Diketone Derivatives. Chinese Journal of Organic Chemistry, 2019, 39, 1711.	0.6	5
12	A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions. Chemical Science, 2018, 9, 4562-4568.	3.7	93
13	Copper(II)-Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light. Journal of the American Chemical Society, 2018, 140, 15850-15858.	6.6	172
14	Alkylation–peroxidation of α-carbonyl imines or ketones catalyzed by a copper salt <i>via</i> radical-mediated C _{sp3} –H functionalization. Organic Chemistry Frontiers, 2018, 5, 3083-3087.	2.3	8
15	Transition-metal-free oxidative cyclization of <i>N</i> -propargyl ynamides: stereospecific construction of linear polycyclic N-heterocycles. Green Chemistry, 2018, 20, 3271-3278.	4.6	33
16	Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical–radical coupling. Chemical Science, 2017, 8, 5757-5763.	3.7	77
17	Asymmetric Construction of 3,3-Disubstituted Oxindoles Bearing Vicinal Quaternary–Tertiary Carbon Stereocenters Catalyzed by a Chiral-at-Rhodium Complex. Journal of Organic Chemistry, 2017, 82, 6457-6467.	1.7	24
18	Threeâ€Component Asymmetric Mannich Reaction Catalyzed by a Lewis Acid with Rhodiumâ€Centered Chirality. Chemistry - an Asian Journal, 2017, 12, 963-967.	1.7	29

Lei Gong

#	Article	IF	CITATIONS
19	Enantioselective 2-Alkylation of 3-Substituted Indoles with Dual Chiral Lewis Acid/Hydrogen-Bond-Mediated Catalyst. Organic Letters, 2017, 19, 222-225.	2.4	27
20	Asymmetric alkylation of remote C(sp ³)–H bonds by combining proton-coupled electron transfer with chiral Lewis acid catalysis. Chemical Communications, 2017, 53, 8964-8967.	2.2	106
21	An N-heterocyclic carbene iridium catalyst with metal-centered chirality for enantioselective transfer hydrogenation of imines. Chemical Communications, 2017, 53, 8089-8092.	2.2	35
22	Asymmetric dual catalysis via fragmentation of a single rhodium precursor complex. Chemical Communications, 2016, 52, 7699-7702.	2.2	35
23	Restricted Conformation of a Hydrogen Bond Mediated Catalyst Enables the Highly Efficient Enantioselective Construction of an All-Carbon Quaternary Stereocenter. ACS Catalysis, 2016, 6, 7641-7646.	5.5	44
24	Enantioselective Î ² -alkylation of pyrroles with the formation of an all-carbon quaternary stereocenter. Organic Chemistry Frontiers, 2016, 3, 1319-1325.	2.3	21
25	Metalâ€Templated Asymmetric Catalysis: (<i>Z</i>)â€1â€Bromoâ€1â€Nitrostyrenes as Versatile Substrates for Friedel–Crafts Alkylation of Indoles. Asian Journal of Organic Chemistry, 2016, 5, 1198-1203.	1.3	19
26	Metal-Templated Design: Enantioselective Hydrogen-Bond-Driven Catalysis Requiring Only Parts-per-Million Catalyst Loading. Journal of the American Chemical Society, 2016, 138, 8774-8780.	6.6	71
27	Tuning the Basicity of a Metalâ€Templated BrÃ,nsted Base to Facilitate the Enantioselective Sulfaâ€Michael Addition of Aliphatic Thiols to α,βâ€Unsaturated <i>N</i> â€Acylpyrazoles. European Journal of Organic Chemistry, 2016, 2016, 887-890.	1.2	33
28	Chiral-at-metal iridium complex for efficient enantioselective transfer hydrogenation of ketones. Chemical Communications, 2016, 52, 4207-4210.	2.2	57
29	Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiralâ€atâ€Rhodium Lewis Acid. Chemistry - an Asian Journal, 2015, 10, 2738-2743.	1.7	29
30	Enantioselective Sulfaâ€Michael Addition to α,βâ€Unsaturated γâ€Oxoesters Catalyzed by a Metalâ€Templated Chiral BrÃ,nsted Base. Asian Journal of Organic Chemistry, 2015, 4, 434-437.	1.3	26
31	Asymmetric aza-Henry reaction to provide oxindoles with quaternary carbon stereocenter catalyzed by a metal-templated chiral BrÄ,nsted base. Organic Chemistry Frontiers, 2015, 2, 968-972.	2.3	50
32	Asymmetric Friedel–Crafts alkylation of indoles with 2-nitro-3-arylacrylates catalyzed by a metal-templated hydrogen bonding catalyst. Tetrahedron Letters, 2015, 56, 4653-4656.	0.7	46
33	Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality. Chemical Science, 2015, 6, 1094-1100.	3.7	148
34	Aerobic Asymmetric Dehydrogenative Crossâ€Coupling between Two CH Groups Catalyzed by a Chiralâ€atâ€Metal Rhodium Complex. Angewandte Chemie - International Edition, 2015, 54, 13045-13048.	7.2	135
35	Metal-templated chiral BrÃ,nsted base organocatalysis. Nature Communications, 2014, 5, 4531.	5.8	65
36	Asymmetric Catalysis Mediated by the Ligand Sphere of Octahedral Chiralâ€atâ€Metal Complexes. Angewandte Chemie - International Edition, 2014, 53, 10868-10874.	7.2	137

Lei Gong

#	Article	IF	CITATIONS
37	Method for the Preparation of Nonracemic Bis-Cyclometalated Iridium(III) Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 4164-4172.	1.0	58
38	Thioether-based anchimeric assistance for asymmetric coordination chemistry with ruthenium(ii) and osmium(ii). Dalton Transactions, 2013, 42, 5623.	1.6	8
39	Chiral-Auxiliary-Mediated Asymmetric Synthesis of Ruthenium Polypyridyl Complexes. Accounts of Chemical Research, 2013, 46, 2635-2644.	7.6	86
40	Asymmetric Catalysis with an Inert Chiral-at-Metal Iridium Complex. Journal of the American Chemical Society, 2013, 135, 10598-10601.	6.6	145
41	Chiral Enol Oxazolines and Thiazolines as Auxiliary Ligands for the Asymmetric Synthesis of Rutheniumâ€Polypyridyl Complexes. Chemistry - an Asian Journal, 2013, 8, 2274-2280.	1.7	6
42	Chiralâ€atâ€Metal Octahedral Iridium Catalyst for the Asymmetric Construction of an Allâ€Carbon Quaternary Stereocenter. Angewandte Chemie - International Edition, 2013, 52, 14021-14025.	7.2	107
43	Active <i>versus</i> Passive Substituent Participation in the Auxiliaryâ€Mediated Asymmetric Synthesis of an Octahedral Metal Complex. Chemistry - an Asian Journal, 2012, 7, 2523-2526.	1.7	10
44	Isomerizationâ€Induced Asymmetric Coordination Chemistry: From Auxiliary Control to Asymmetric Catalysis. Angewandte Chemie - International Edition, 2010, 49, 7955-7957.	7.2	50
45	Chiral Salicyloxazolines as Auxiliaries for the Asymmetric Synthesis of Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2010, 49, 7692-7699.	1.9	36
46	Osmabenzenes from Osmacycles Containing an η ² oordinated Olefin. Chemistry - A European Journal, 2009, 15, 6258-6266.	1.7	48
47	Chiral-Auxiliary-Mediated Asymmetric Synthesis of Tris-Heteroleptic Ruthenium Polypyridyl Complexes. Journal of the American Chemical Society, 2009, 131, 9602-9603.	6.6	53
48	Synthesis and Characterization of Stable Ruthenabenzenes Starting from HCâ‹®CCH(OH)Câ‹®CH. Organometallics, 2007, 26, 2705-2713.	1.1	84
49	Synthesis and characterization of a bimetallic iridium complex with a ten sp2-carbon chain bridge. Dalton Transactions, 2007, , 4122.	1.6	11