Yi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539385/publications.pdf

Version: 2024-02-01

57 papers	1,261 citations	18 h-index	377849 34 g-index
57 all docs	57 docs citations	57 times ranked	1344 citing authors

#	Article	IF	Citations
1	Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se ₂ @NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 8106-8114.	8.0	214
2	Helical Transfer through Nonlocal Interactions. Journal of the American Chemical Society, 2009, 131, 5986-5993.	13.7	107
3	Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118988.	20.2	101
4	Terminal Is Important for the Helicity of the Self-Assemblies of Dipeptides Derived from Alanine. Langmuir, 2013, 29, 6013-6017.	3 . 5	87
5	Solvent-Induced Handedness Inversion of Dipeptide Sodium Salts Derived from Alanine. Langmuir, 2013, 29, 9721-9726.	3.5	66
6	Circularly polarized luminescence from structurally coloured polymer films. Chemical Communications, 2021, 57, 2796-2799.	4.1	43
7	Chiral zirconia nanotubes prepared through a sol–gel transcription approach. Journal of Materials Chemistry A, 2014, 2, 333-338.	10.3	39
8	Preparation of helical mesoporous ethylene–silica nanofibers with lamellar mesopores on the surfaces. Chemical Communications, 2010, 46, 2680.	4.1	37
9	Preparation of Singleâ€Handed Helical Carbon/Silica and Carbonaceous Nanotubes by Using 4,4′â€Biphenyleneâ€Bridged Polybissilsesquioxane. Chemistry - an Asian Journal, 2013, 8, 2714-2720.	3.3	37
10	Control of the Handedness of Self-assemblies of Dipeptides by the Chirality of Phenylalanine and Steric Hindrance of Phenylglycine. Langmuir, 2016, 32, 7420-7426.	3 . 5	37
11	Circularly polarized luminescence of single-handed helical tetraphenylethylene–silica nanotubes. Chemical Communications, 2019, 55, 12176-12179.	4.1	34
12	Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. Journal of Alloys and Compounds, 2015, 646, 966-972.	5 . 5	32
13	Preparation of Helical Mesoporous Tantalum Oxide Nanotubes through a Sol–Gel Transcription Approach. Chemistry - an Asian Journal, 2013, 8, 709-712.	3.3	31
14	SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials. Frontiers in Chemistry, 2018, 6, 166.	3.6	30
15	Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries. Materials and Design, 2017, 133, 169-175.	7.0	25
16	Chirality of the 1,4-phenylene–silica nanoribbons at the nano and angstrom levels. Nanotechnology, 2013, 24, 035603.	2.6	21
17	Preparation of helical titania nanotubes using a sol–gel transcription approach. Materials Letters, 2012, 88, 23-26.	2.6	20
18	SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries. Materials Letters, 2017, 205, 245-248.	2.6	19

#	Article	lF	Citations
19	Chirality-Driven Parallel and Antiparallel β-Sheet Secondary Structures of Phe–Ala Lipodipeptides. Langmuir, 2017, 33, 8246-8252.	3.5	18
20	Light emission properties and self-assembly of a tolane-based luminogen. RSC Advances, 2015, 5, 38690-38695.	3.6	17
21	Fabrication of chiral mesoporous carbonaceous nanofibers and their electrochemical energy storage. Electrochimica Acta, 2016, 213, 752-760.	5.2	17
22	Chiral Carbonaceous Nanotubes Containing Twisted Carbonaceous Nanoribbons, Prepared by the Carbonization of Chiral Organic Selfâ€Assemblies. Chemistry - an Asian Journal, 2014, 9, 2866-2871.	3.3	16
23	A chiral luminescent liquid crystal with a tolane unit. Liquid Crystals, 2016, 43, 777-782.	2.2	16
24	Preparation of Chiral 4,4′â€Biphenyleneâ€silica Nanoribbons. Chinese Journal of Chemistry, 2009, 27, 1860-1862.	4.9	15
25	pH-influenced handedness inversion of circularly polarized luminescence. New Journal of Chemistry, 2021, 45, 21941-21946.	2.8	12
26	Fabrication of TiO2@C/N composite nanofibers and application as stable lithium-ion battery anode. Materials Letters, 2020, 279, 128491.	2.6	11
27	Tuning the circularly polarized luminescence of polymer-stabilized cholesteric liquid crystal films using chiral dopants. Journal of Materials Chemistry C, 2022, 10, 8246-8253.	5.5	11
28	Fabrication of Ta2O5@C/F composite nanotubes as stable anode material for Lithium-ion batteries. Materials Letters, 2020, 267, 127545.	2.6	10
29	Achiral Polydialkylsilane Aggregates That Record Stirring Direction. Chemistry - an Asian Journal, 2016, 11, 852-857.	3.3	9
30	<i>>bola</i> -Type Ala–Ala Dipeptides: Odd–Even Effect in Molecular Packing Structures. Langmuir, 2019, 35, 11406-11413.	3.5	9
31	Fabrication of C/SiC/Si composite fibers from helical mesoporous silica and application as lithium ion battery anode. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 489-495.	5.3	9
32	Helical mesoporous carbon nanoribbons as high performance lithium ion battery anode materials. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 434-438.	5.3	8
33	Helicity of perfluoroalkyl chains controlled by the selfâ€assembly of the Alaâ€Ala dipeptides. Chirality, 2019, 31, 992-1000.	2.6	8
34	A "center-determination―phenomenon of C ₁₃ H ₂₇ CO-Gly-Ala-Ala lipotripetides: relationship between the molecular chirality and handedness of organic self-assemblies. New Journal of Chemistry, 2019, 43, 11503-11509.	2.8	7
35	A series of fluorinated liquid crystals with an alanine residue. Liquid Crystals, 2020, 47, 465-470.	2.2	7
36	Fabrication of high-performance lithium ion battery anode materials from polysilsesquioxane nanotubes. Journal of Alloys and Compounds, 2021, 859, 157801.	5.5	7

#	Article	IF	Citations
37	Helical mesoporous organic–inorganic hybrid silica nanofibers prepared using a TPE-based silane for explosive detection. Materials Letters, 2022, 306, 130957.	2.6	7
38	Chirality of 4,4′-Biphenylene Bridged Polybissilsesquioxane Nanotubes Using the Dipeptides Derived from Valine. Journal of Nanoscience and Nanotechnology, 2015, 15, 2451-2455.	0.9	6
39	Fabrication of Carbonaceous Nanotubes and Mesoporous Nanofibers as Stable Anode Materials for Lithium-Ion Battery. ACS Applied Nano Materials, 2018, 1, 5536-5542.	5.0	6
40	Circularly polarized luminescence from cholesteric organic-inorganic hybrid silica films. Dyes and Pigments, 2022, 200, 110121.	3.7	6
41	Single-handed helical carbonaceous bundles prepared using a chiral polybissilsesquioxane. Materials Letters, 2014, 128, 279-283.	2.6	5
42	Chirality-driven molecular packing structure difference and potential application for 3D printing of a series of bola-type Ala–Phe dipeptides. New Journal of Chemistry, 2020, 44, 20726-20733.	2.8	5
43	Silica covering driven intensity enhancement and handedness inversion of the CPL signals of the supramolecular assemblies. New Journal of Chemistry, 2021, 45, 8986-8992.	2.8	5
44	A chirality indicator for the walls and the surfaces of silica nanotubes. Chinese Chemical Letters, 2013, 24, 770-772.	9.0	4
45	Molecular packing and the handedness of the self-assemblies of C ₁₇ H ₃₅ CO-Ala-Phe sodium salts. New Journal of Chemistry, 2017, 41, 13253-13259.	2.8	4
46	Singleâ€Handed Helical Carbonaceous Nanotubes: Preparation, Optical Activity, and Applications. Chemical Record, 2018, 18, 55-64.	5.8	4
47	Alignment of twisted nanoribbons formed by C ₁₇ H ₃₅ CO-Val-Ala sodium salts. Soft Matter, 2018, 14, 6353-6359.	2.7	4
48	Molecular packing handedness dominated by the chirality of the lactic acid residue near the liquid crystalline core. Liquid Crystals, 2021, 48, 1043-1053.	2.2	4
49	A highly conductive quasi-solid-state electrolyte based on helical silica nanofibers for lithium batteries. RSC Advances, 2021, 11, 33858-33866.	3.6	4
50	Helical twisting power enhancement by adding banana-shaped molecules. Molecular Crystals and Liquid Crystals, 2021, 726, 41-50.	0.9	3
51	Preparation of twisted organic–inorganic hybrid silica bundles with circularly polarized luminescence by supramolecular templating polymerization. Materials Letters, 2021, 300, 130177.	2.6	3
52	Ala–Ala dipeptides with a semi-perfluoroalkyl chain: chirality driven molecular packing difference and self-assembly driven chiral transfer. New Journal of Chemistry, 2021, 45, 3193-3201.	2.8	2
53	Stereostructure Dependence Phenomenon on the Self-Assembly of Ala-Ala-Ala Lipotripeptides. Langmuir, 2022, 38, 2248-2256.	3.5	1
54	Self-assembly driven chiral transfer from dipeptide to the twist and stacking handedness of cyanobiphenylyl groups. New Journal of Chemistry, 0 , , .	2.8	1

#	Article	IF	CITATION
55	Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	0
56	Effect of C ₁₂ H ₂₅ O– substituent position on the self-assembly behaviour of C ₆ H ₅ COO–Ala–Ala dipeptide. New Journal of Chemistry, 2021, 45, 12585-12592.	2.8	0
57	Handedness inversion of the self-assemblies of lipotetrapeptides regulated by the shift of the methyl group. New Journal of Chemistry, 0 , , .	2.8	0