Nadia Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539237/publications.pdf Version: 2024-02-01

Νληίλ Πιιλρτέ

#	Article	IF	CITATIONS
1	Population homogeneity for the antibody response to COVID-19 BNT162b2/Comirnaty vaccine is only reached after the second dose across all adult age ranges. Nature Communications, 2022, 13, 140.	5.8	22
2	Prediabetes blunts DPP4 genetic control of postprandial glycaemia and insulin secretion. Diabetologia, 2022, 65, 861-871.	2.9	3
3	Insights into Macrophage/Monocyte-Endothelial Cell Crosstalk in the Liver: A Role for Trem-2. Journal of Clinical Medicine, 2021, 10, 1248.	1.0	7
4	Production of highâ€quality SARSâ€CoVâ€2 antigens: Impact of bioprocess and storage on glycosylation, biophysical attributes, and ELISA serologic tests performance. Biotechnology and Bioengineering, 2021, 118, 2202-2219.	1.7	27
5	Longitudinal Analysis of Antibody Responses to the mRNA BNT162b2 Vaccine in Patients Undergoing Maintenance Hemodialysis: A 6-Month Follow-Up. Frontiers in Medicine, 2021, 8, 796676.	1.2	6
6	Trem-2 Promotes Emergence of Restorative Macrophages and Endothelial Cells During Recovery From Hepatic Tissue Damage. Frontiers in Immunology, 2020, 11, 616044.	2.2	34
7	Dipeptidyl Peptidaseâ€4 Is a Proâ€Recovery Mediator During Acute Hepatotoxic Damage and Mirrors Severe Shifts in Kupffer Cells. Hepatology Communications, 2018, 2, 1080-1094.	2.0	10
8	Immunoglobulin M gene association with autoantibody reactivity and type 1 diabetes. Immunogenetics, 2017, 69, 429-437.	1.2	6
9	A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE, 2016, 11, e0159850.	1.1	11
10	How Inflammation Impinges on NAFLD: A Role for Kupffer Cells. BioMed Research International, 2015, 2015, 1-11.	0.9	100
11	Skin and Peripheral Lymph Node Invariant NKT Cells Are Mainly Retinoic Acid Receptor-Related Orphan Receptor γt+ and Respond Preferentially under Inflammatory Conditions. Journal of Immunology, 2009, 183, 2142-2149.	0.4	140
12	Autoimmunity Triggers in the NOD Mouse. Annals of the New York Academy of Sciences, 2009, 1173, 442-448.	1.8	10
13	iNKT cell development is orchestrated by different branches of TGF-Î ² signaling. Journal of Experimental Medicine, 2009, 206, 1365-1378.	4.2	81
14	The Idd6.2 diabetes susceptibility region controls defective expression of the Lrmp gene in nonobese diabetic (NOD) mice. Immunogenetics, 2007, 59, 407-416.	1.2	8
15	Defective Induction of CTLA-4 in the NOD Mouse Is Controlled by the NOD Allele of Idd3/IL-2 and a Novel Locus (Ctex) Telomeric on Chromosome 1. Diabetes, 2006, 55, 538-544.	0.3	21
16	Prevention of Diabetes in Nonobese Diabetic Mice Mediated by CD1d-Restricted Nonclassical NKT Cells. Journal of Immunology, 2004, 173, 3112-3118.	0.4	98
17	Diabetes Protection and Restoration of Thymocyte Apoptosis in NOD Idd6 Congenic Strains. Diabetes, 2003, 52, 1677-1682.	0.3	29
18	The MHC locus controls size variations in the CD4 compartment of the mouse thymus. Immunogenetics, 2001, 53, 662-668.	1.2	8