
Qun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. Journal of Genetics and Genomics, 2022, 49, 726-734.	1.7	4
2	Molecular cloning and functional characterization of GmAAPTs from soybean (Glycine max). Plant Signaling and Behavior, 2021, 16, 1845048.	1.2	1
3	A CPAT1 Mutation in Arabidopsis Enhances Plant Height but Impairs Seed Oil Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 785.	1.8	9
4	Phospholipase Dδ regulates pollen tube growth by modulating actin cytoskeleton organization in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2021, 16, 1915610.	1.2	3
5	Rice shaker potassium channel <scp>OsAKT2</scp> positively regulates salt tolerance and grain yield by mediating K ⁺ redistribution. Plant, Cell and Environment, 2021, 44, 2951-2965.	2.8	41
6	Seed specifically over-expressing DGAT2A enhances oil and linoleic acid contents in soybean seeds. Biochemical and Biophysical Research Communications, 2021, 568, 143-150.	1.0	14
7	Functional analysis of indole 3-hexanoic acid as a novel auxin from Arabidopsis thaliana. Planta, 2021, 254, 69.	1.6	2
8	HSP70-3 Interacts with Phospholipase Dδ and Participates in Heat Stress Defense. Plant Physiology, 2021, 185, 1148-1165.	2.3	27
9	Overexpression of soybean GmPLDÎ ³ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis. Plant Science, 2020, 290, 110298.	1.7	14
10	Involvement of Arabidopsis phospholipase D \hat{I}' in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. Journal of Experimental Botany, 2020, 71, 6555-6570.	2.4	29
11	Phosphatidic acid directly binds with rice potassium channel OsAKT2 to inhibit its activity. Plant Journal, 2020, 102, 649-665.	2.8	30
12	Transcriptional regulation of Arabidopsis copper amine oxidase ζ (CuAOζ) in indole-3-butyric acid-induced lateral root development. Plant Growth Regulation, 2019, 89, 287-297.	1.8	5
13	Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. Plant Cell, 2019, 31, 250-271.	3.1	97
14	Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis. Plant Growth Regulation, 2018, 84, 467-479.	1.8	32
15	Peroxisomal CuAOζ and its product H2O2 regulate the distribution of auxin and IBA-dependent lateral root development in Arabidopsis. Journal of Experimental Botany, 2017, 68, 4851-4867.	2.4	33
16	Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 2220-2235.	2.8	45
17	Functional regulation of plant NADPH oxidase and its role in signaling. Plant Signaling and Behavior, 2017, 12, e1356970.	1.2	43
18	Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. Journal of Plant Research, 2017, 130, 193-202.	1.2	18

Qun Zhang

#	Article	IF	CITATIONS
19	Phosphatidic acid binds to and regulates guanine nucleotide exchange factor 8 (GEF8) activity in Arabidopsis. Functional Plant Biology, 2017, 44, 1029.	1.1	7
20	Arabidopsis thaliana constitutively active ROP11 interacts with the NADPH oxidase respiratory burst oxidase homologue F to regulate reactive oxygen species production in root hairs. Functional Plant Biology, 2016, 43, 221.	1.1	14
21	Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein and Cell, 2016, 7, 81-88.	4.8	16
22	Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. Journal of Plant Research, 2015, 128, 211-220.	1.2	70
23	Phospholipids. Plant Signaling and Behavior, 2014, 9, e28337.	1.2	18
24	Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta, 2014, 239, 565-575.	1.6	73
25	Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. Journal of Plant Research, 2014, 127, 533-544.	1.2	31
26	Phospholipase Ds in Plant Response to Hyperosmotic Stresses. Signaling and Communication in Plants, 2014, , 121-134.	0.5	3
27	Phosphatidic Acid Regulates Microtubule Organization by Interacting with MAP65-1 in Response to Salt Stress in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4555-4576.	3.1	219
28	Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max). Journal of Plant Research, 2012, 125, 569-578.	1.2	47
29	Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in ci>ArabidopsisÀ Â Â Plant Cell 2009, 21, 2357-2377	3.1	517