Chloé Arson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539066/publications.pdf

Version: 2024-02-01

		430754	501076
58	993	18	28
papers	citations	h-index	g-index
60	60	60	680
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Deformation and failure mechanisms of granular soil around pressurised shallow cavities. Geotechnique, 2023, 73, 265-280.	2.2	2
2	Molecular Dynamics Analysis of Silica/PMMA Interface Shear Behavior. Polymers, 2022, 14, 1039.	2.0	1
3	Assessing static liquefaction triggering considering fabric anisotropy effects under the ACST framework. Computers and Geotechnics, 2022, 148, 104796.	2.3	2
4	Anisotropy and Microcrack Propagation Induced by Weathering, Regional Stresses and Topographic Stresses. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
5	Micromechanical modeling for rateâ€dependent behavior of salt rock under cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 28-44.	1.7	6
6	Fabric evolution and crack propagation in salt during consolidation and cyclic compression tests. Acta Geotechnica, 2021, 16, 1679-1697.	2.9	4
7	Coupled Brittle and Viscous Micromechanisms Produce Semibrittle Flow, Grainâ€Boundary Sliding, and Anelasticity in Saltâ€Rock. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021261.	1.4	6
8	Finite Element model of concrete repaired by High Molecular Weight Methacrylate (HMWM). Engineering Structures, 2021, 233, 111860.	2.6	4
9	Substrate and cell fusion influence on slime mold network dynamics. Scientific Reports, 2021, 11, 1498.	1.6	7
10	Imaging local soil kinematics during the first days of maize root growth in sand. Scientific Reports, 2021, 11, 22262.	1.6	7
11	Self-consistent approach for modeling coupled elastic and visco-plastic processes induced by dislocation and pressure solution. International Journal of Solids and Structures, 2021, 238, 111376.	1.3	3
12	Fluid-driven transition from damage to fracture in anisotropic porous media: a multi-scale XFEM approach. Acta Geotechnica, 2020, 15, 113-144.	2.9	36
13	DEM analysis on the role of aggregates on concrete strength. Computers and Geotechnics, 2020, 119, 103290.	2.3	51
14	Modeling root system growth around obstacles. Scientific Reports, 2020, 10, 15868.	1.6	10
15	Tensile strength of calcite/HMWM and silica/HMWM interfaces: A Molecular Dynamics analysis. Construction and Building Materials, 2020, 251, 118925.	3.2	18
16	Mechanisms of Anisotropy in Salt Rock Upon Microcrack Propagation. Rock Mechanics and Rock Engineering, 2020, 53, 3185-3205.	2.6	16
17	XFEM to couple nonlocal micromechanics damage with discrete mode I cohesive fracture. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112617.	3.4	9
18	DEM modelling of sequential fragmentation of zeolite granules under oedometric compression based on XCT observations. Powder Technology, 2019, 347, 66-75.	2.1	36

#	Article	IF	Citations
19	Substrate composition directs slime molds behavior. Scientific Reports, 2019, 9, 15444.	1.6	7
20	Mineral Weathering and Bedrock Weakening: Modeling Microscale Bedrock Damage Under Biotite Weathering. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2623-2646.	1.0	14
21	Simulation of salt-cavity healing based on a micro–macro model of pressure solution. Petroleum Geoscience, 2019, 25, 251-257.	0.9	5
22	An isotropic self-consistent homogenization scheme for chemo-mechanical healing driven by pressure solution in halite. International Journal of Solids and Structures, 2019, 161, 96-110.	1.3	13
23	Self-consistent micromechanical approach for damage accommodation in rock-like polycrystalline materials. International Journal of Damage Mechanics, 2019, 28, 134-161.	2.4	7
24	Anisotropic nonlocal damage model for materials with intrinsic transverse isotropy. International Journal of Solids and Structures, 2018, 139-140, 29-42.	1.3	25
25	Energy distribution during the quasi-static confined comminution of granular materials. Acta Geotechnica, 2018, 13, 1075-1083.	2.9	26
26	Micromechanics based discrete damage model with multiple non-smooth yield surfaces: Theoretical formulation, numerical implementation and engineering applications. International Journal of Damage Mechanics, 2018, 27, 611-639.	2.4	19
27	Nonlocal enrichment of a micromechanical damage model with tensile softening: Advantages and limitations. Computers and Geotechnics, 2018, 94, 196-206.	2.3	8
28	Discrete equivalent wing crack based damage model for brittle solids. International Journal of Solids and Structures, 2017, 110-111, 279-293.	1.3	16
29	Fracture-Induced Anisotropy of the Stress–Strain Response of Shale at Multiple Scales. International Journal of Geomechanics, 2017, 17, .	1.3	8
30	Computational model coupling mode II discrete fracture propagation with continuum damage zone evolution. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41, 223-250.	1.7	21
31	Analysis of unsaturated materials hydration incorporating the effect of thermo-osmotic flow. Geomechanics for Energy and the Environment, 2016, 6, 101-115.	1.2	11
32	Prediction of viscous cracking and cyclic fatigue of salt polycrystals using a joint-enriched finite element model. Mechanics of Materials, 2016, 103, 28-43.	1.7	14
33	Discrete element modeling of shielding and size effects during single particle crushing. Computers and Geotechnics, 2016, 78, 227-236.	2.3	59
34	A fully coupled damage-plasticity model for unsaturated geomaterials accounting for the ductileâ€"brittle transition in drying clayey soils. International Journal of Solids and Structures, 2016, 91, 102-114.	1.3	21
35	Micro–macro approach of salt viscous fatigue under cyclic loading. Mechanics of Materials, 2016, 93, 13-31.	1.7	44
36	Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns. Rock Mechanics and Rock Engineering, 2015, 48, 2567-2580.	2.6	12

#	Article	IF	CITATIONS
37	Chemomechanical evolution of pore space in carbonate microstructures upon dissolution: Linking pore geometry to bulk elasticity. Journal of Geophysical Research: Solid Earth, 2015, 120, 6878-6894.	1.4	16
38	Bayesian paradigm to assess rock compression damage models. Environmental Geotechnics, 2015, 2, 155-165.	1.3	4
39	Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities. Rock Mechanics and Rock Engineering, 2015, 48, 2283-2299.	2.6	11
40	A Model of Damage and Healing Coupling Halite Thermo-mechanical Behavior to Microstructure Evolution. Geotechnical and Geological Engineering, 2015, 33, 389-410.	0.8	31
41	ANISOTROPIC DAMAGE MODELS FOR GEOMATERIALS: THEORETICAL AND NUMERICAL CHALLENGES. International Journal of Computational Methods, 2014, 11, 1342007.	0.8	26
42	Probabilistic calibration of a damage rock mechanics model. Geotechnique Letters, 2014, 4, 17-21.	0.6	5
43	Homogenization of cemented soil stiffness and application to the study of arching effects between jet-grouted columns. KSCE Journal of Civil Engineering, 2014, 18, 2072-2079.	0.9	0
44	A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure. Acta Geotechnica, 2014, 9, 847-867.	2.9	61
45	Probabilistic optimization of a continuum mechanics model to predict differential stress-induced damage in claystone. International Journal of Rock Mechanics and Minings Sciences, 2014, 68, 136-149.	2.6	6
46	Generalized stress variables in Continuum Damage Mechanics. Mechanics Research Communications, 2014, 60, 81-84.	1.0	12
47	Influence of damage on pore size distribution and permeability of rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 810-831.	1.7	53
48	Retention and permeability properties of damaged porous rocks. Computers and Geotechnics, 2013, 48, 272-282.	2.3	27
49	Modeling the Influence of Thermo-Mechanical Crack Opening and Closure on Rock Stiffness. , 2013, , .		3
50	On the definition of damage in time-dependent healing models for salt rock. Geotechnique Letters, 2012, 2, 67-71.	0.6	21
51	A thermodynamically consistent framework for saturated viscoplastic rock-materials subject to damage. Mechanics Research Communications, 2012, 45, 15-21.	1.0	15
52	Thermoâ€hydroâ€mechanical modeling of damage in unsaturated porous media: Theoretical framework and numerical study of the EDZ. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 272-306.	1.7	36
53	USING A GEO-MECHANICAL DAMAGE MODEL TO ASSESS PERMEABILITY IN CRACKED POROUS MEDIA: INTERNAL LENGTH PARAMETER ISSUES. Special Topics and Reviews in Porous Media, 2012, 3, 69-77.	0.6	3
54	Numerical study of a thermo-hydro-mechanical damage model for unsaturated porous media. Annals of Solid and Structural Mechanics, 2010, 1, 59-78.	0.5	18

CHLOé ARSON

#	Article	IF	CITATIONS
55	A mixed damage model for unsaturated porous media. Comptes Rendus - Mecanique, 2009, 337, 68-74.	2.1	12
56	\hat{l}_{r} -STOCK, a powerful tool of thermohydromechanical behaviour and damage modelling of unsaturated porous media. Computers and Geotechnics, 2008, 35, 890-915.	2.3	36
57	On damage modelling in unsaturated clay rocks. Physics and Chemistry of the Earth, 2008, 33, S407-S415.	1.2	16
58	Micro-macro mechanics of damage and healing in rocks. Open Geomechanics, 0, 2, 1-41.	0.0	29