List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. Journal of Hazardous Materials, 2012, 241-242, 146-153.	12.4	213
2	Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. Journal of Hazardous Materials, 2011, 187, 164-170.	12.4	211
3	Adsorption isotherms and thermochemical data of FD&C Red n° 40 binding by Chitosan. Brazilian Journal of Chemical Engineering, 2011, 28, 295-304.	1.3	204
4	Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydrate Polymers, 2011, 84, 231-238.	10.2	190
5	Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. Journal of Environmental Chemical Engineering, 2019, 7, 103396.	6.7	174
6	Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chemical Engineering Journal, 2013, 214, 8-16.	12.7	165
7	Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. Journal of Food Engineering, 2007, 80, 749-753.	5.2	164
8	Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules, 2021, 26, 594.	3.8	153
9	Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis. Bioresource Technology, 2012, 103, 123-130.	9.6	144
10	Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: Used to produce biofilm. Chemical Engineering and Processing: Process Intensification, 2011, 50, 351-355.	3.6	132
11	Kinetics and Mechanism of Tartrazine Adsorption onto Chitin and Chitosan. Industrial & Engineering Chemistry Research, 2012, 51, 6862-6868.	3.7	129
12	Adsorption of FD&C Red No. 40 by chitosan: Isotherms analysis. Journal of Food Engineering, 2009, 95, 16-20.	5.2	105
13	Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system. Journal of Molecular Liquids, 2017, 225, 265-270.	4.9	100
14	Production and refinement of oil from carp (Cyprinus carpio) viscera. Food Chemistry, 2010, 119, 945-950.	8.2	94
15	Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. Journal of Colloid and Interface Science, 2014, 424, 7-15.	9.4	94
16	Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. Journal of Colloid and Interface Science, 2013, 411, 27-33.	9.4	87
17	Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents. Environmental Science and Pollution Research, 2019, 26, 28584-28592.	5.3	84
18	Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 2014, 92, 2324-2332.	5.6	81

#	Article	IF	CITATIONS
19	Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations. , 2017, , 19-51.		78
20	Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules, 2019, 123, 210-220.	7.5	77
21	Characterization of thin layer drying of Spirulina platensis utilizing perpendicular air flow. Bioresource Technology, 2009, 100, 1297-1303.	9.6	76
22	Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. Journal of Hazardous Materials, 2020, 388, 122042.	12.4	74
23	Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. Journal of Colloid and Interface Science, 2020, 560, 722-729.	9.4	73
24	Kinetics and Mechanism of the Food Dye FD&C Red 40 Adsorption onto Chitosan. Journal of Chemical & Engineering Data, 2011, 56, 3759-3765.	1.9	72
25	Kinetics and thermodynamics adsorption of carotenoids and chlorophylls in rice bran oil bleaching. Journal of Food Engineering, 2016, 185, 9-16.	5.2	72
26	Remoção dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina de soluções aquosas utilizando carvão ativado, terra ativada, terra diatomácea, quitina e quitosana: estudos de equilÃbrio e termodinâmica. Quimica Nova, 2011, 34, 1193-1199.	0.3	71
27	Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis. Brazilian Journal of Chemical Engineering, 2013, 30, 13-21.	1.3	71
28	New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment. Food Chemistry, 2015, 171, 1-7.	8.2	71
29	Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. Journal of Industrial and Engineering Chemistry, 2014, 20, 3387-3393.	5.8	69
30	Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochemistry, 2012, 47, 1335-1343.	3.7	68
31	Kinetic studies on the biosorption of phenol by nanoparticles from Spirulina sp. LEB 18. Journal of Environmental Chemical Engineering, 2013, 1, 1137-1143.	6.7	68
32	Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye. International Journal of Biological Macromolecules, 2019, 121, 373-380.	7.5	68
33	Analysis of mass transfer kinetics in the biosorption of synthetic dyes onto Spirulina platensis nanoparticles. Biochemical Engineering Journal, 2012, 68, 85-90.	3.6	67
34	Optimisation of <i>Spirulina platensis</i> convective drying: evaluation of phycocyanin loss and lipid oxidation. International Journal of Food Science and Technology, 2010, 45, 1572-1578.	2.7	66
35	Preparation of Chitosan with Different Characteristics and Its Application for Biofilms Production. Journal of Polymers and the Environment, 2015, 23, 470-477.	5.0	65
36	Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. Journal of Environmental Chemical Engineering, 2019, 7, 103460.	6.7	64

#	Article	IF	CITATIONS
37	Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy, 2016, 93, 25-32.	5.7	62
38	Diffusive model with variable effective diffusivity considering shrinkage in thin layer drying of chitosan. Journal of Food Engineering, 2007, 81, 127-132.	5.2	60
39	Moisture sorption properties of chitosan. LWT - Food Science and Technology, 2010, 43, 415-420.	5.2	59
40	Synthesis of a novel CoFe2O4/chitosan magnetic composite for fast adsorption of indigotine blue dye. Carbohydrate Polymers, 2019, 217, 6-14.	10.2	59
41	Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environmental Science and Pollution Research, 2017, 24, 5908-5917.	5.3	58
42	Characteristics and chemical composition of skins gelatin from cobia (Rachycentron canadum). LWT - Food Science and Technology, 2014, 57, 580-585.	5.2	57
43	Production of low molecular weight chitosan by acid and oxidative pathways: Effect on physicochemical properties. Food Research International, 2019, 123, 88-94.	6.2	56
44	Drying of chitosan in a spouted bed: The influences of temperature and equipment geometry in powder quality. LWT - Food Science and Technology, 2011, 44, 1786-1792.	5.2	55
45	Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy, 2020, 147, 798-805.	8.9	53
46	Preparation, Characterization and Dye Adsorption/Reuse of Chitosan-Vanadate Films. Journal of Polymers and the Environment, 2018, 26, 2917-2924.	5.0	51
47	Equilibrium Isotherms, Thermodynamics, and Kinetic Studies for the Adsorption of Food Azo Dyes onto Chitosan Films. Chemical Engineering Communications, 2015, 202, 1316-1323.	2.6	50
48	Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloids and Surfaces B: Biointerfaces, 2012, 91, 234-241.	5.0	49
49	Chitosan–based nanofibers for enzyme immobilization. International Journal of Biological Macromolecules, 2021, 183, 1959-1970.	7.5	49
50	Influence of Drying Techniques on the Characteristics of Chitosan and the Quality of Biopolymer Films. Drying Technology, 2011, 29, 1784-1791.	3.1	47
51	Development of Spirulina/chitosan foam adsorbent for phenol adsorption. Journal of Molecular Liquids, 2020, 309, 113256.	4.9	45
52	PHYCOCYANIN CONTENT OF <i>SPIRULINA PLATENSIS</i> DRIED IN SPOUTED BED AND THIN LAYER. Journal of Food Process Engineering, 2008, 31, 34-50.	2.9	42
53	Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. LWT - Food Science and Technology, 2015, 64, 126-130.	5.2	42
54	Removal of Al (III) and Fe (III) from binary system and industrial effluent using chitosan films. International Journal of Biological Macromolecules, 2018, 120, 1667-1673.	7.5	42

#	Article	IF	CITATIONS
55	Diffusive Model with Shrinkage in the Thin-Layer Drying of Fish Muscles. Drying Technology, 2006, 24, 509-516.	3.1	41
56	Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. International Journal of Biological Macromolecules, 2020, 142, 85-93.	7.5	41
57	Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects. Adsorption, 2016, 22, 973-983.	3.0	39
58	Moisture sorption isotherms of chitosan-glycerol films: Thermodynamic properties and microstructure. Food Bioscience, 2018, 22, 170-177.	4.4	38
59	Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. International Journal of Biological Macromolecules, 2019, 131, 905-911.	7.5	38
60	Preparation of bionanoparticles derived from Spirulina platensis and its application for Cr (VI) removal from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2012, 18, 1925-1930.	5.8	37
61	Polyunsaturated Fatty Acid Concentrates of Carp Oil: Chemical Hydrolysis and Urea Complexation. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 329-334.	1.9	36
62	Biosorption of phenol onto bionanoparticles from Spirulina sp. LEB 18. Journal of Colloid and Interface Science, 2013, 407, 450-456.	9.4	36
63	Fixed bed adsorption of Methylene Blue by ultrasonic surface modified chitin supported on sand. Chemical Engineering Research and Design, 2015, 100, 302-310.	5.6	35
64	Adsorption of Cr (VI) by chitosan with different deacetylation degrees. Desalination and Water Treatment, 2013, 51, 7690-7699.	1.0	34
65	Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film. Journal of Environmental Chemical Engineering, 2021, 9, 105516.	6.7	34
66	Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic. International Journal of Food Science and Technology, 2008, 43, 1824-1831.	2.7	33
67	Vanadium removal from aqueous solutions by adsorption onto chitosan films. Desalination and Water Treatment, 2016, 57, 16583-16591.	1.0	33
68	Preparation of nanoemulsions containing unsaturated fatty acid concentrate–chitosan capsules. Journal of Colloid and Interface Science, 2015, 445, 137-142.	9.4	32
69	Comparison of chitosan with different physical forms to remove Reactive Black 5 from aqueous solutions. Journal of Environmental Chemical Engineering, 2016, 4, 2259-2267.	6.7	32
70	Development of chitosan/ <i>Spirulina</i> bioâ€blend films and its biosorption potential for dyes. Journal of Applied Polymer Science, 2017, 134, .	2.6	31
71	Chitosan and cyanoguanidine-crosslinked chitosan coated glass beads and its application in fixed bed adsorption. Chemical Engineering Communications, 2019, 206, 1474-1486.	2.6	31
72	Carp (<i>Cyprinus carpio</i>) oils obtained by fishmeal and ensilage processes: characteristics and lipid profiles. International Journal of Food Science and Technology, 2009, 44, 1642-1648.	2.7	30

#	Article	IF	CITATIONS
73	Cyanoguanidine-crosslinked chitosan to adsorption of food dyes in the aqueous binary system. Journal of Molecular Liquids, 2015, 211, 425-430.	4.9	29
74	Migration of mycotoxins into rice starchy endosperm during the parboiling process. LWT - Food Science and Technology, 2009, 42, 433-437.	5.2	28
75	Bleaching with blends of bleaching earth and activated carbon reduces color and oxidation products of carp oil. European Journal of Lipid Science and Technology, 2015, 117, 829-836.	1.5	28
76	Azo dyes adsorption in fixed bed column packed with different deacetylation degrees chitosan coated glass beads. Journal of Environmental Chemical Engineering, 2018, 6, 3233-3241.	6.7	28
77	Equilibrium modeling of single and binary adsorption of Food Yellow 4 and Food Blue 2 on modified chitosan using a statistical physics theory: new microscopic interpretations. Journal of Molecular Liquids, 2016, 222, 151-158.	4.9	27
78	Crosslinking agents effect on gelatins from carp and tilapia skins and in their biopolymeric films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 184-191.	4.7	27
79	Bleaching optimization and winterization step evaluation in the refinement of rice bran oil. Separation and Purification Technology, 2017, 175, 72-78.	7.9	26
80	A new approach to convert rice husk waste in a quick and efficient adsorbent to remove cationic dye from water. Journal of Environmental Chemical Engineering, 2019, 7, 103504.	6.7	26
81	Development of chitosan/Spirulina sp. blend films as biosorbents for Cr6+ and Pb2+ removal. International Journal of Biological Macromolecules, 2020, 155, 142-152.	7.5	26
82	Single and Binary Adsorption of Food Dyes on Chitosan/Activated Carbon Hydrogels. Chemical Engineering and Technology, 2019, 42, 454-464.	1.5	25
83	Treatment of chitin effluents by coagulation–flocculation with chitin and aluminum sulfate. Journal of Environmental Chemical Engineering, 2013, 1, 50-55.	6.7	24
84	Characteristics of thin-layer drying of the cyanobacterium Aphanothece microscopica NÃgeli. Chemical Engineering and Processing: Process Intensification, 2007, 46, 63-69.	3.6	23
85	Influence of drying methods on the characteristics of a vegetable paste formulated by linear programming maximizing antioxidant activity. LWT - Food Science and Technology, 2015, 60, 178-185.	5.2	23
86	Preparation of biopolymer film from chitosan modified with lipid fraction. International Journal of Food Science and Technology, 2011, 46, 1856-1862.	2.7	22
87	Desorption isotherms and thermodynamics properties of anchovy in natura and enzymatic modified paste. Journal of Food Engineering, 2012, 110, 507-513.	5.2	22
88	Spirulina sp. biomass dried/disrupted by different methods and their application in biofilms production. Food Science and Biotechnology, 2018, 27, 1659-1665.	2.6	22
89	Use of Chitosan with Different Deacetylation Degrees for the Adsorption of Food Dyes in a Binary System. Clean - Soil, Air, Water, 2014, 42, 767-774.	1.1	21
90	Optimization of <i>Spirulina</i> sp. Drying in Heat Pump: Effects on the Physicochemical Properties and Color Parameters. Journal of Food Processing and Preservation, 2016, 40, 934-942.	2.0	21

#	Article	IF	CITATIONS
91	Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters. International Journal of Biological Macromolecules, 2021, 166, 934-939.	7.5	20
92	Nanoemulsions From Unsaturated Fatty Acids Concentrates of Carp Oil Using Chitosan, Gelatin, and Their Blends as Wall Materials. European Journal of Lipid Science and Technology, 2018, 120, 1700240.	1.5	19
93	Kinetics and mass transfer aspects about the adsorption of tartrazine by a porous chitosan sponge. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 105-117.	1.7	18
94	Influence of Air Temperature on Physical Characteristics and Bioactive Compounds in Vacuum Drying of <i>Arthrospira Spirulina</i> . Journal of Food Process Engineering, 2017, 40, e12359.	2.9	18
95	Adsorption Kinetics in Liquid Phase: Modeling for Discontinuous and Continuous Systems. , 2017, , 53-76.		18
96	Nile tilapia industrialization waste: Evaluation of the yield, quality and cost of the biodiesel production process. Journal of Cleaner Production, 2021, 287, 125041.	9.3	18
97	Ultrasound-assisted treatment of chitin: evaluation of physicochemical characteristics and dye removal potential. E-Polymers, 2016, 16, 49-56.	3.0	17
98	Physicochemical, biochemical, and thermal properties of Arthrospira (Spirulina) biomass dried in spouted bed at different conditions. Journal of Applied Phycology, 2018, 30, 1019-1029.	2.8	17
99	Preparation of new biocoagulants by shrimp waste and its application in coagulation-flocculation processes. Journal of Cleaner Production, 2020, 269, 122397.	9.3	17
100	Multiclass Method for the Determination of Pesticide Residues in Oat Using Modified QuEChERS with Alternative Sorbent and Liquid Chromatography with Tandem Mass Spectrometry. Food Analytical Methods, 2019, 12, 2835-2844.	2.6	16
101	Electrospun chitosan/poly(ethylene oxide) nanofibers applied for the removal of glycerol impurities from biodiesel production by biosorption. Journal of Molecular Liquids, 2018, 268, 365-370.	4.9	15
102	Biodiesel produced from crude, degummed, neutralized and bleached oils of Nile tilapia waste: Production efficiency, physical-chemical quality and economic viability. Renewable Energy, 2020, 161, 110-119.	8.9	15
103	Moisture sorption characteristics of microalgae Spirulina platensis. Brazilian Journal of Chemical Engineering, 2009, 26, 189-197.	1.3	14
104	Microencapsulation of different oils rich in unsaturated fatty acids using dairy industry waste. Journal of Cleaner Production, 2018, 196, 665-673.	9.3	14
105	Chitosan-coated sand and its application in a fixed-bed column to remove dyes in simple, binary, and real systems. Environmental Science and Pollution Research, 2020, 27, 37938-37945.	5.3	14
106	Physical Cross-linkers: Alternatives to Improve the Mechanical Properties of Fish Gelatin. Food Engineering Reviews, 2012, 4, 165-170.	5.9	12
107	Structured lipids by swine lard interesterification with oil and esters from common carp viscera. Journal of Food Process Engineering, 2018, 41, e12679.	2.9	12
108	A statistical physics analysis of the adsorption of Fe3+, Al3+ and Cu2+ heavy metals on chitosan films via homogeneous and heterogeneous monolayer models. Journal of Molecular Liquids, 2021, 343, 117617.	4.9	12

#	Article	IF	CITATIONS
109	"Winterização" de óleo de pescado via solvente. Food Science and Technology, 2009, 29, 207-213.	1.7	11
110	Modified Gelatin Films from Croaker Skins: Effects of <scp>pH</scp> , and Addition of Glycerol and Chitosan. Journal of Food Process Engineering, 2015, 38, 613-620.	2.9	11
111	Isotherms, kinetics, and thermodynamic studies for adsorption of pigments and oxidation products in oil bleaching from catfish waste. Chemical Engineering Communications, 2019, 206, 1399-1413.	2.6	11
112	Thermodynamic analysis of single and binary adsorption of Food Yellow 4 and Food Blue 2 on CC-chitosan: Application of statistical physics and IAST models. Journal of Molecular Liquids, 2017, 232, 499-505.	4.9	10
113	Dietary chitosan supplementation in Litopenaeus vannamei reared in a biofloc system: Effect on antioxidant status facing saline stress. Aquaculture, 2021, 544, 737034.	3.5	10
114	Extração de gelatina a partir das peles de cabeças de carpa comum. Ciencia Rural, 2011, 41, 904-909.	0.5	9
115	Effect of carp (<i>Cyprinus carpio</i>) oil incorporation on water vapour permeability, mechanical properties and transparency of chitosan films. International Journal of Food Science and Technology, 2013, 48, 1309-1317.	2.7	9
116	Physicochemical characteristics of the <i>Spirulina</i> sp. dried in heat pump and conventional tray dryers. International Journal of Food Science and Technology, 2015, 50, 2614-2620.	2.7	9
117	Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: Characterization and thermodynamic properties. Journal of Food Engineering, 2019, 248, 28-35.	5.2	9
118	Deodorisation process variables for croaker (M. furnieri) oil. Food Chemistry, 2009, 114, 396-401.	8.2	8
119	Determination of the effective thermal diffusivity in a porous bed containing rice grains: effects of moisture content and temperature. Heat and Mass Transfer, 2016, 52, 887-896.	2.1	8
120	Frontiers in Biomaterials. , 2017, , .		8
121	Evaluation of Mechanical Properties and Water Vapor Permeability in Chitosan Biofilms Using Sorbitol and Glycerol. Macromolecular Symposia, 2012, 319, 240-245.	0.7	7
122	Evaluation of Lycopene Loss and Colour Values in Convective Drying of Tomato by Surface Response Methodology. International Journal of Food Engineering, 2013, 9, 233-238.	1.5	7
123	The effect of temperature on rice oil bleaching to reduce oxidation and loss in bioactive compounds. Grasas Y Aceites, 2019, 70, 287.	0.9	7
124	Carbon nanotube-based materials for environmental remediation processes. , 2022, , 475-513.		7
125	Biosorption of glycerol impurities from biodiesel production onto electrospun chitosan-based nanofibers: equilibrium and thermodynamic evaluations. Environmental Science and Pollution Research, 2019, 26, 28436-28443.	5.3	6
126	Gelatin Films from Carp Skin Crosslinked by Gallic Acid and Incorporated with Chitosan/Tuna Lipid Fractions. Journal of Polymers and the Environment, 2021, 29, 2096-2110.	5.0	6

#	Article	IF	CITATIONS
127	EVALUATION OF MOLECULAR WEIGHT OF CHITOSAN IN THIN‣AYER AND SPOUTED BED DRYING. Journal of Food Process Engineering, 2011, 34, 160-174.	2.9	5
128	Statistical Evaluation of the Protein Enrichment of Rice Bran Using Spouted Bed. Drying Technology, 2012, 30, 733-738.	3.1	5
129	Protein quality of dried enzymatic hydrolysate from anchovy produced in a spouted bed of inert particles. International Journal of Food Science and Technology, 2015, 50, 819-825.	2.7	5
130	Adsorption Kinetics of Dyes in Single and Binary Systems Using Cyanoguanidine-Crosslinked Chitosan of Different Deacetylation Degrees. Journal of Polymers and the Environment, 2018, 26, 2401-2409.	5.0	5
131	Chitosan-coated different particles in spouted bed and their use in dye continuous adsorption system. Environmental Science and Pollution Research, 2019, 26, 28510-28523.	5.3	5
132	Treatment of industrial glycerol from biodiesel production by adsorption operation: kinetics and thermodynamics analyses. Chemical Engineering Communications, 2019, 206, 1388-1398.	2.6	5
133	Application of statistical physics formalism for the modeling of adsorption isotherms of water molecules on the microalgae Spirulina platensis. Food and Bioproducts Processing, 2019, 114, 103-112.	3.6	5
134	Programação linear para formulação de pasta de vegetais e operação de secagem em leito de jorro. Ciencia Rural, 2011, 41, 2032-2038.	0.5	4
135	Product characteristics and quality of bovine bloodâ€enriched dried vegetable paste. Journal of the Science of Food and Agriculture, 2014, 94, 3255-3262.	3.5	4
136	Nanoemulsions containing unsaturated fatty acid concentrates. , 2016, , 71-106.		4
137	Parametrization of particle coating process with chitosan in spouted bed. Particulate Science and Technology, 2020, 38, 54-62.	2.1	4
138	Techno-Economic Analysis of Producing Oil Rich in É3 from Catfish Processing Wastes. Waste and Biomass Valorization, 2022, 13, 707-717.	3.4	4
139	Screening Among 8 Pathovars of <i>Xanthomonas arboricola</i> pv <i>pruni</i> . Industrial Biotechnology, 2022, 18, 147-153.	0.8	4
140	Drying Kinetics, Biochemical and Functional Properties of Products in Convective Drying ofAnchovy (<i>Engraulis anchoita</i>) Fillets. International Journal of Food Engineering, 2013, 9, 341-351.	1.5	3
141	Chitosan-Based Hydrogels. Sustainable Agriculture Reviews, 2019, , 147-173.	1.1	3
142	Monitoring of the fluidized bed particle drying process by temperature and pressure drop measurements. Drying Technology, 2022, 40, 1935-1947.	3.1	3
143	Development of adsorbent rigid structure based on Spirulina sp./chitosan bioblends coatings for dye adsorption in fixed bed column. Environmental Science and Pollution Research, 0, , .	5.3	3
144	Estudo das propriedades fÃsicas e de transporte na secagem de cebola (Allium cepa L.) em camada delgada. Food Science and Technology, 2004, 24, 319-326.	1.7	2

#	Article	IF	CITATIONS
145	Kinetic Study of Adsorption of Pigments and Oxidation Products in the Bleaching of Rice Bran Oil. International Journal of Food Engineering, 2016, 12, 211-219.	1.5	2
146	Characterization and Film-Forming Properties of Gelatins from Whitemouth Croaker (<i>Micropogonias furnieri</i>) Skin and Bones. Journal of Aquatic Food Product Technology, 2017, 26, 447-456.	1.4	2
147	Physico-chemical interactions of a new rod-coil-rod polymer with liposomal system: Approaches to applications in tryptophan-related therapies. Chemistry and Physics of Lipids, 2021, 235, 105027.	3.2	2
148	Chitosan oated Glass Beads in a Fluidized Bed for Use in Fixedâ€Bed Dye Adsorption. Chemical Engineering and Technology, 2021, 44, 631-638.	1.5	2
149	Condições de secagem de uma pasta de anchoita modificada enzimaticamente na oxidação lipÃdica, lisina disponÃvel e atividade antioxidante do produto. Ciencia Rural, 2013, 43, 530-536.	0.5	2
150	Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Separation and Purification Technology, 2022, 292, 121062.	7.9	2
151	Preparation of Unsaturated Fatty Acids/Chitosan Microcapsules: Influence of Solvent. Macromolecular Symposia, 2014, 343, 39-44.	0.7	1
152	Protein content maximization of vegetable paste by incorporation of whey through the linear programming: drying and rehydration evaluation. Journal of Food Science and Technology, 2018, 55, 2541-2551.	2.8	1
153	Structured lipids of swine lard and oils from byproducts of skipjack tuna and of common carp. Journal of Food Processing and Preservation, 2021, 45, e15154.	2.0	1
154	REMOÇÃO DE TURBIDEZ E SÓLIDOS TOTAIS DE EFLUENTES DO PROCESSO DE OBTENÇÃO DE QUITINA. , 0,	· • •	1
155	CINÉTICA DE ADSORÇÃO DE CORANTES ALIMENTÃCIOS EM SISTEMA BINÃRIO POR QUITOSANA COM E SEN MODIFICAÇÃO. , 0, , .	М	1
156	Analysis of the thermal and physicochemical properties of unsaturated fatty acid concentrates from cobia (Rachycentron canadum) and Argentine croaker (Umbrina) Tj ETQq0 0 0 r	g BT 9/Overl	o r k 10 Tf 5
157	Isotermas de adsorção de umidade e cinética de secagem de sementes de trevo persa (Trifolium) Tj ETQq1 1 REVENG, 0, 28, 535-548.	0.784314 0.2	ł rgBT /Ovei 1
158	N-Alkylated Sulfamic Acid Derivatives as Organocatalyst in Multicomponent Synthesis of Fatty Dihydropyrimidinones. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
159	Spray-Drying Microencapsulation of Carotenoids Produced by <i>Phaffia rhodozyma</i> . Industrial Biotechnology, 2020, 16, 300-308.	0.8	0
160	Contribuição à Sociologia Administrativa do Brasil. Revista Do Serviço Público, 1955, 66, 5-10.	0.3	0
161	ESTUDO DAS ISOTERMAS DE ADSORÇÃ f O DE AZO-CORANTES POR FILMES DE QUITOSANA. , 0, , .		0
162	APLICAÇÃO DE FILMES DE OUITOSANA NA ADSORÇÃO DO CORANTE TÊXTIL REATIVO PRETO 50		0

#	Article	IF	CITATIONS
163	SECAGEM DE PASTA DE VEGETAIS ENRIQUECIDA DE SANGUE BOVINO: AVALIAÇÃO DAS PROPRIEDADES FUNCIONAIS E NUTRICIONAIS DAS PROTEÃ₦AS. , 0, , .		Ο
164	ADSORÇÃO DO CORANTE TÊXTIL REATIVO PRETO 5 DE SOLUÇÕES AQUOSAS UTILIZANDO QUITOSANA CO DIFERENTES GRAUS DE DESACETILAÇÃO NAS FORMAS DE PÓ E FILME. , 0, , .	ЭМ	0
165	AVALIAÇÃ∱O DO EFEITO DO pH NA ADSORÇÃ∱O DO CORANTE TÊXTIL PRETO REATIVO Nº 5 UTILIZANDO FI DE QUITOSANA MODIFICADOS COM TERRA ATIVADA EM DIFERENTES PROPORÇÕES. , 0, , .	LMES	0
166	OTIMIZAÇÃ $_{ m f}$ O DE BRANQUEAMENTO DE ÓLEO DE FARELO DE ARROZ COM BLENDAS DE ADSORVENTES. , 0, ,		0
167	AVALIAÇÃ∱O DA INFLUÊNCIA DA MATRIZ SiO4 NO PROCESSO DE RECOBRIMENTO DE SUPERFÀIE COM QUITOSANA PELO MÉTODO —DIP-COATING' E O EFEITO DINÃ,MICO NO LEITO FIXO. , 0, , .		0
168	CINÉTICA E TERMODINÃ,MICA DA ADSORÇÃO DE CAROTENÓIDES E CLOROFILAS NO BRANQUEAMENTO [ÓLEO DE FARELO DE ARROZ. , 0, , .	DE	0
169	UTILIZAÇÃO DA PROGRAMAÇÃO LINEAR NA FORMULAÇÃO DE PASTA DE VEGETAIS ENRIQUECIDA COM PLASMA BOVINO E SECAGEM EM LEITO DE JORRO. , 0, , .		0
170	ELABORAÇÃO DE MICROESTRUTURAS POROSAS A BASE DE QUITOSANA E QUITINA PARA A ADSORÇÃO DO CORANTE AZUL BRILHANTE. , 0, , .)	0
171	ADSORÇÃO DO CORANTE AZUL BRILHANTE EM COLUNA DE LEITO FIXO UTILIZANDO ESFERAS E PELLETS RECOBERTOS COM QUITOSANA. , 0, , .		Ο