Sreerag Gopi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science, 2001, 41, 1471-1485.	1.5	960
2	Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology, 2003, 63, 283-293.	3.8	753
3	Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. Journal of Traditional and Complementary Medicine, 2017, 7, 205-233.	1.5	565
4	Advances in cellulose nanomaterials. Cellulose, 2018, 25, 2151-2189.	2.4	329
5	Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 2011, 86, 1790-1798.	5.1	304
6	Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 2014, 59, 27-34.	2.5	287
7	Viscoelastic Behavior and Reinforcement Mechanism in Rubber Nanocomposites in the Vicinity of Spherical Nanoparticles. Journal of Physical Chemistry B, 2013, 117, 12632-12648.	1.2	165
8	Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polymer International, 2004, 53, 1624-1638.	1.6	131
9	Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate Polymers, 2017, 169, 176-188.	5.1	130
10	Preparation of Bionanomaterials and their Polymer Nanocomposites from Waste and Biomass. Waste and Biomass. Waste	1.8	113
11	UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 2017, 99, 37-45.	3.6	113
12	Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules, 2019, 131, 858-870.	3.6	94
13	Excellent Electromagnetic Interference Shielding and High Electrical Conductivity of Compatibilized Polycarbonate/Polypropylene Carbon Nanotube Blend Nanocomposites. Industrial & Engineering Chemistry Research, 2018, 57, 4287-4297.	1.8	90
14	Dynamic mechanical and thermal properties of physically compatibilized natural rubber/poly(methyl) Tj ETQq0 (Polymer Science, Part B: Polymer Physics, 2000, 38, 525-536.) 0 rgBT /0 2.4	overlock 10 Tf 89
15	Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. Journal of Water Process Engineering, 2016, 14, 1-8.	2.6	89
16	General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 2019, 13, 59-78.	1.7	89
17	UV resistant transparent bionanocomposite films based on potato starch/cellulose for sustainable packaging. Starch/Staerke, 2018, 70, 1700139.	1.1	85
18	Chitin and Chitosan Based Composites for Energy and Environmental Applications: A Review. Waste and Biomass Valorization, 2021, 12, 4777-4804.	1.8	74

SREERAG GOPI

#	Article	IF	CITATIONS
19	Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohydrate Polymers, 2017, 165, 115-122.	5.1	72
20	Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Composites Part B: Engineering, 2019, 173, 106798.	5.9	65
21	Developing highly conducting and mechanically durable styrene butadiene rubber composites with tailored microstructural properties by a green approach using ionic liquid modified MWCNTs. RSC Advances, 2016, 6, 32493-32504.	1.7	51
22	Facile synthesis of chitin nanocrystals decorated on 3D cellulose aerogels as a new multi-functional material for waste water treatment with enhanced anti-bacterial and anti-oxidant properties. New Journal of Chemistry, 2017, 41, 12746-12755.	1.4	50
23	Chitin nanowhisker – Inspired electrospun PVDF membrane for enhanced oil-water separation. Journal of Environmental Management, 2018, 228, 249-259.	3.8	47
24	Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polymer Bulletin, 2019, 76, 1557-1571.	1.7	46
25	Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances. Polymers, 2020, 12, 1664.	2.0	44
26	Preparation, characterization and anti-colitis activity of curcumin-asafoetida complex encapsulated in turmeric nanofiber. Materials Science and Engineering C, 2017, 81, 20-31.	3.8	40
27	Transport behaviour of aromatic solvents through styrene butadiene rubber/poly [methyl methacrylate] (SBR/PMMMA) interpenetrating polymer network (IPN) membranes. Polymer, 2017, 116, 76-88.	1.8	35
28	Preparation, characterization and <i>in vitro</i> study of liposomal curcumin powder by cost effective nanofiber weaving technology. New Journal of Chemistry, 2018, 42, 5117-5127.	1.4	33
29	Hybrid materials for electromagnetic shielding: A review. Polymer Composites, 2022, 43, 2507-2544.	2.3	33
30	Cellulose Nanofiber vs Nanocrystals From Pineapple Leaf Fiber: A Comparative Studies on Reinforcing Efficiency on Starch Nanocomposites. Macromolecular Symposia, 2018, 380, 1800102.	0.4	32
31	Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. Journal of Liposome Research, 2021, 31, 356-364.	1.5	32
32	Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via green crosslinker. International Journal of Biological Macromolecules, 2019, 134, 781-790.	3.6	29
33	An effective EMI shielding material based on poly(trimethylene terephthalate) blend nanocomposites with multiwalled carbon nanotubes. New Journal of Chemistry, 2018, 42, 13915-13926.	1.4	28
34	Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: New strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene) Tj ETQq	10 0206rgB	T/Ozwerlock 10
35	Highly crosslinked 3-D hydrogels based on graphene oxide for enhanced remediation of multi contaminant wastewater. Journal of Water Process Engineering, 2019, 31, 100850.	2.6	27

SREERAG GOPI

#	Article	IF	CITATIONS
37	Nanocellulose and its derivative materials for energy and environmental applications. Journal of Materials Science, 2022, 57, 6835-6880.	1.7	23
38	Recent Progress in Electromagnetic Interference Shielding Performance of Porous Polymer Nanocomposites—A Review. Energies, 2022, 15, 3901.	1.6	23
39	Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive. Polymer Testing, 2018, 68, 395-404.	2.3	22
40	Viscoelastic properties of nanostructured natural rubber/polystyrene interpenetrating polymer networks. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1680-1696.	2.4	21
41	Multiwalled carbon nanotube promotes crystallisation while preserving co-continuous phase morphology of polycarbonate/polypropylene blend. Polymer Testing, 2017, 64, 1-11.	2.3	19
42	Turmeric nanofiber-encapsulated natural product formulation act as a phytogenic feed additive—A study in broilers on growth performance, biochemical indices of blood, and <i>E. coli</i> in cecum. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 581-588.	1.8	18
43	Isolation and characterization of stable nanofiber from turmeric spent using chemical treatment by acid hydrolysis and its potential as antimicrobial and antioxidant activities. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 327-340.	1.2	17
44	Compatibilization of polymer blends by micro and nanofillers. , 2020, , 179-203.		15
45	Relaxations and chain dynamics of sequential full interpenetrating polymer networks based on natural rubber and poly(methyl methacrylate). Polymer International, 2014, 63, 1427-1438.	1.6	13
46	Positron annihilation spectroscopic characterization of free-volume defects and their correlations with the mechanical and transport properties of SBR–PMMA interpenetrating polymer networks. Physical Chemistry Chemical Physics, 2020, 22, 18169-18182.	1.3	10
47	Characterization studies of polymer-based composites related to functionalized filler-matrix interface. , 2020, , 219-250.		10
48	Thin and efficient <scp>EMI</scp> shielding materials from binary thermoplastic blend nanocomposites. Polymers for Advanced Technologies, 2022, 33, 966-979.	1.6	10
49	Green materials for aerospace industries. , 2017, , 307-318.		8
50	Liposomal nanostructures: Properties and applications. , 2021, , 163-179.		8
51	Applications of cellulose nanofibrils in drug delivery. , 2018, , 75-95.		7
52	Development and Modification of Cellulose Acetate/Carboxy Methyl Cellulose Blend Films for Enhanced Adsorption of Methylene Blue. Macromolecular Symposia, 2018, 380, 1800107.	0.4	7
53	Current research on the blends of chitosan as new biomaterials. , 2020, , 247-283.		6
54	High dielectric thin films based on UV-reduced graphene oxide and TEMPO-oxidized cellulose nanofibres. Cellulose, 2021, 28, 3069-3080.	2.4	6

SREERAG GOPI

#	Article	IF	CITATIONS
55	Chapter 4. Fully Green Bionanocomposites. RSC Green Chemistry, 2011, , 102-128.	0.0	5
56	Systematic review on activity of liposomal encapsulated antioxidant, antibiotics, and antiviral agents. Journal of Liposome Research, 2022, 32, 340-353.	1.5	5
57	Synthesis, microstructure, and properties of high-strength porous ceramics. , 2018, , 265-271.		4
58	Fabrication of Interpenetrating Polymer Networks of SBR and PMMA with Nano Domains. Materials Today: Proceedings, 2019, 9, 77-84.	0.9	4
59	Microscopic studies on chitin and chitosan-based interpenetrating polymer networks, gels, blends, composites, and nanocomposites. , 2020, , 95-138.		4
60	Chitin and chitosan-based aerogels. , 2020, , 285-334.		4
61	Synergistic effect of MWCNTs and MA-g-PP on the thermal and viscoelastic properties of immiscible PTT/PP blends. New Journal of Chemistry, 2020, 44, 16557-16568.	1.4	2
62	Spectroscopic Characterization Protocols for Interpenetrating Polymeric Networks. , 2019, , 233-241.		0
63	Green materials for waste water treatment. , 2021, , 503-528.		0
64	Processing of advanced green nanomaterials. , 2021, , 15-30.		0
65	Highly efficient microencapsulation of phytonutrients by fractioned cellulose using biopolymer complexation technology. Journal of Complementary and Integrative Medicine, 2022, .	0.4	0