Esperanza Pavon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538728/publications.pdf

Version: 2024-02-01

759233 794594 39 452 12 19 citations h-index g-index papers 40 40 40 360 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrothermal Reactivity of Na-n-Micas (n = 2, 3, 4). Chemistry of Materials, 2006, 18, 2867-2872.	6.7	53
2	Synthetic High-Charge Organomica: Effect of the Layer Charge and Alkyl Chain Length on the Structure of the Adsorbed Surfactants. Langmuir, 2012, 28, 7325-7332.	3.5	39
3	Formation of Organo-Highly Charged Mica. Langmuir, 2011, 27, 9711-9718.	3.5	33
4	New insights into surface-functionalized swelling high charged micas: Their adsorption performance for non-ionic organic pollutants. Journal of Industrial and Engineering Chemistry, 2017, 52, 179-186.	5.8	29
5	Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach. American Mineralogist, 2013, 98, 394-400.	1.9	20
6	Influence of temperature and time on the Eu $3+$ reaction with synthetic Na-Mica- n (n = 2 and 4). Chemical Engineering Journal, 2016, 284, 1174-1183.	12.7	17
7	Cs+ immobilization by designed micaceous adsorbent under subcritical conditions. Applied Clay Science, 2017, 143, 293-299.	5.2	16
8	New Trends in Nanoclay-Modified Sensors. Inorganics, 2021, 9, 43.	2.7	16
9	Interaction of Hydrated Cations with Mica- $\langle i \rangle n \langle i \rangle n \langle i \rangle = 2$, 3 and 4) Surface. Journal of Physical Chemistry C, 2014, 118, 2115-2121.	3.1	15
10	Bionanocomposites based on chitosan intercalation in designed swelling high-charged micas. Scientific Reports, 2019, 9, 10265.	3.3	15
11	Solution Properties of the System ZrSiO ₄ â€"HfSiO ₄ : A Computational and Experimental Study. Journal of Physical Chemistry C, 2013, 117, 10013-10019.	3.1	14
12	Hydrothermal Stability of Layered Silicates in Neutral and Acidic Media: Effect on Engineered-Barrier Safety. Clays and Clay Minerals, 2010, 58, 501-514.	1.3	13
13	Design swelling micas: Insights on heavy metals cation exchange reaction. Applied Clay Science, 2019, 182, 105298.	5.2	13
14	Synthesis and characterization of gallium containing kanemite. Microporous and Mesoporous Materials, 2006, 94, 66-73.	4.4	10
15	Evolution of Phases and Al–Si Distribution during Na-4-Mica Synthesis. Journal of Physical Chemistry C, 2011, 115, 20084-20090.	3.1	10
16	A new route of synthesis of Na-Mica-4 from sodalite. Microporous and Mesoporous Materials, 2014, 186, 176-180.	4.4	10
17	Direct evidence of Lowenstein's rule violation in swelling high-charge micas. Chemical Communications, 2014, 50, 6984.	4.1	10
18	Mixed Ba1â^'xLaxF2+x fluoride materials as catalyst for the gas phase fluorination of 2-chloropyridine by HF. Applied Catalysis B: Environmental, 2017, 204, 107-118.	20.2	9

#	Article	IF	Citations
19	Designed organomicaceous materials for efficient adsorption of iodine. Journal of Environmental Chemical Engineering, 2021, 9, 106577.	6.7	9
20	Synthesis temperature effect on Na-Mica-4 crystallinity and heteroatom distribution. Microporous and Mesoporous Materials, 2015, 204, 282-288.	4.4	8
21	Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and) Tj ETQq1 1 0.78 4394-4401.	4314 rgBT 3.5	「/Overlock 10 8
22	Natural abundance 170 MAS NMR and DFT simulations: New insights into the atomic structure of designed micas. Solid State Nuclear Magnetic Resonance, 2019, 100, 45-51.	2.3	8
23	Multiple pollutants removal by functionalized heterostructures based on Na-2-Mica. Applied Clay Science, 2020, 196, 105749.	5.2	8
24	Pb2+, Cd2+ and Hg2+ removal by designed functionalized swelling high-charged micas. Science of the Total Environment, 2021, 764, 142811.	8.0	8
25	Impact of hydrothermal treatment of FEBEX and MX80 bentonites in water, HNO3 and Lu(NO3)3 media: Implications for radioactive waste control. Applied Clay Science, 2015, 118, 48-55.	5.2	7
26	Cesium adsorption isotherm on swelling high-charged micas from aqueous solutions: Effect of temperature. American Mineralogist, 2018, 103, 623-628.	1.9	7
27	Swelling layered minerals applications: A solid state NMR overview. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 124-125, 99-128.	7.5	7
28	Evaluation of rare earth on layered silicates under subcritical conditions: Effect of the framework and interlayer space composition. Chemical Geology, 2013, 347, 208-216.	3.3	6
29	Influence of framework and interlayer on the colloidal stability of design swelling high-charged micas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 32-38.	4.7	6
30	Influence of the synthesis parameter on the interlayer and framework structure of lamellar octadecyltrimethylammonium kanemite. Applied Clay Science, 2014, 95, 9-17.	5.2	5
31	An insight on the design of mercapto functionalized swelling brittle micas. Journal of Colloid and Interface Science, 2020, 561, 533-541.	9.4	5
32	Effect of the crystal chemistry on the hydration mechanism of swelling micas. Geochimica Et Cosmochimica Acta, 2017, 217, 231-239.	3.9	4
33	Synthesis and characterization of kanemite from fluoride-containing media: Influence of the alkali cation. American Mineralogist, 2013, 98, 1000-1007.	1.9	3
34	A comprehensive and in-depth analysis of the synthesis of advanced adsorbent materials. Journal of Cleaner Production, 2018, 194, 665-672.	9.3	3
35	Exploring the local environment of the engineered nanoclay Mica-4 under hydrothermal conditions using Eu3+ as a luminescent probe. Journal of Alloys and Compounds, 2022, 921, 166086.	5.5	3
36	Phase separation of carboxylic acids on graphite surface at submonolayer regime. European Physical Journal: Special Topics, 2009, 167, 151-156.	2.6	2

#	Article	IF	CITATIONS
37	Heteroatom framework distribution and layer charge of sodium Taeniolite. Applied Clay Science, 2018, 158, 246-251.	5.2	1
38	By-products revaluation in the production of design micaceous materials. Applied Clay Science, 2021, 214, 106292.	5.2	1
39	Insight into the role of temperature, time and pH in the effective zirconium retention using clay minerals. Journal of Environmental Management, 2022, 308, 114635.	7.8	1