MarÃ-a Muñoz-AmatriaÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538589/publications.pdf

Version: 2024-02-01

43 papers 3,995 citations

218677 26 h-index 289244 40 g-index

53 all docs

53 docs citations

53 times ranked

4437 citing authors

#	Article	IF	CITATIONS
1	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	27.8	1,365
2	Anchoring and ordering <scp>NGS</scp> contig assemblies by population sequencing (<scp>POPSEQ</scp>). Plant Journal, 2013, 76, 718-727.	5.7	264
3	The genome of cowpea (<i>Vigna unguiculata</i> [L.] Walp.). Plant Journal, 2019, 98, 767-782.	5.7	264
4	Genome resources for climateâ€resilient cowpea, an essential crop for food security. Plant Journal, 2017, 89, 1042-1054.	5.7	199
5	The USDA Barley Core Collection: Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies. PLoS ONE, 2014, 9, e94688.	2.5	188
6	An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers. Plant Genome, 2011, 4, 238-249.	2.8	150
7	A multiâ€parent advanced generation inter•ross (<scp>MAGIC</scp>) population for genetic analysis and improvement of cowpea (<i>Vigna unguiculata</i> L. Walp.). Plant Journal, 2018, 93, 1129-1142.	5.7	132
8	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	5.3	130
9	Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biology, 2013, 14, R58.	8.8	125
10	Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 2018, 8, 6261.	3.3	105
11	A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31510-31518.	7.1	86
12	Genetics of Tillering in Rice and Barley. Plant Genome, 2014, 7, plantgenome2013.10.0032.	2.8	75
13	Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (<i>V.Âunguiculata</i> L. Walp). Plant Biotechnology Journal, 2017, 15, 547-557.	8.3	68
14	Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (<i>Vigna) Tj ETQq0</i>	OOrgBT	Overlock 10
15	The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools. Theoretical and Applied Genetics, 2013, 126, 2533-2551.	3.6	53
16	Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genomics, 2017, 18, 891.	2.8	50
17	A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theoretical and Applied Genetics, 2019, 132, 3079-3087.	3.6	42
18	Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiologia Plantarum, 2006, 127, 551-560.	5.2	37

#	Article	IF	Citations
19	Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Functional and Integrative Genomics, 2009, 9, 311-323.	3.5	37
20	Sequencing of 15Â622 geneâ€bearing BAC s clarifies the geneâ€dense regions of the barley genome. Plant Journal, 2015, 84, 216-227.	5.7	36
21	Seed Coat Pattern QTL and Development in Cowpea (Vigna unguiculata [L.] Walp.). Frontiers in Plant Science, 2019, 10, 1346.	3.6	36
22	Genetic, textual, and archeological evidence of the historical global spread of cowpea (<scp><i>Vigna) Tj ETQq0 (</i></scp>) 0 rgBT /O	iverlock 10 T 34
23	Genetic markers for doubled haploid response in barley. Euphytica, 2007, 158, 287-294.	1.2	33
24	Single Nucleotide Polymorphism Mapping and Alignment of Recombinant Chromosome Substitution Lines in Barley. Plant and Cell Physiology, 2011, 52, 728-737.	3.1	32
25	Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Molecular Breeding, 2008, 22, 119-129.	2.1	31
26	The future of legume genetic data resources: Challenges, opportunities, and priorities., 2019, 1, e16.		30
27	Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genomics, 2010, 11, 653.	2.8	29
28	Barley genetic variation: implications for crop improvement. Briefings in Functional Genomics, 2014, 13, 341-350.	2.7	29
29	The Relationships between Development and Low Temperature Tolerance in Barley Near Isogenic Lines Differing for Flowering Behavior. Plant and Cell Physiology, 2015, 56, 2312-2324.	3.1	27
30	The UCR Minicore: a resource for cowpea research and breeding. , 2021, 3, e95.		26
31	Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. Theoretical and Applied Genetics, 2016, 129, 845-859.	3.6	21
32	Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. Frontiers in Plant Science, 2020, 11, 585927.	3.6	19
33	Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea (Vigna) Tj ETQq1 1 0.78	14 <u>3.1</u> 4 rgBT	Qverlock 1
34	BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma, 2021, 130, 133-147.	2.2	17
35	Orphan genes are involved in drought adaptations and ecoclimatic-oriented selections in domesticated cowpea. Journal of Experimental Botany, 2019, 70, 3101-3110.	4.8	15
36	Population Structure and Genetic Diversity in Korean Cowpea Germplasm Based on SNP Markers. Plants, 2020, 9, 1190.	3.5	15

#	Article	IF	CITATIONS
37	Structural and functional characterization of a winter malting barley. Theoretical and Applied Genetics, 2010, 120, 971-984.	3.6	14
38	Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculataÂ[L.] Walp.). PLoS ONE, 2020, 15, e0229167.	2.5	13
39	Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea [<i>Vigna unguiculata</i> (L.) Walp]. Journal of Experimental Botany, 2021, 72, 6219-6229.	4.8	12
40	A Novel Root-Knot Nematode Resistance QTL on Chromosome Vu01 in Cowpea. G3: Genes, Genomes, Genetics, 2019, 9, 1199-1209.	1.8	10
41	Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V.) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tf 5
42	Sequence Diversity and Structural Variation. Compendium of Plant Genomes, 2018, , 109-122.	0.5	9
43	Genetic basis of barley contributions to beer flavor. Journal of Cereal Science, 2022, 104, 103430.	3.7	9