
Talita A Comunian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538333/publications.pdf Version: 2024-02-01

ΤΛΙΙΤΑ Α COMUNIAN

#	Article	IF	CITATIONS
1	Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 2013, 52, 373-379.	2.9	174
2	Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, 2016, 61, 442-457.	5.6	129
3	Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloids, 2016, 61, 155-162.	5.6	98
4	The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends in Food Science and Technology, 2021, 108, 269-280.	7.8	81
5	Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chemistry, 2017, 237, 948-956.	4.2	79
6	Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chemistry, 2014, 152, 271-275.	4.2	78
7	Assessment of production efficiency, physicochemical properties and storage stability of sprayâ€dried chlorophyllide, a natural food colourant, using gum Arabic, maltodextrin and soy protein isolateâ€based carrier systems. International Journal of Food Science and Technology, 2011, 46, 1259-1265.	1.3	65
8	Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds. Food Chemistry, 2017, 233, 125-134.	4.2	50
9	Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties. Food and Bioprocess Technology, 2020, 13, 53-66.	2.6	45
10	Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chemistry, 2018, 241, 460-467.	4.2	43
11	Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. Food Research International, 2018, 106, 945-951.	2.9	42
12	Effect of different polysaccharides and crosslinkers on echium oil microcapsules. Carbohydrate Polymers, 2016, 150, 319-329.	5.1	40
13	Production of spray-dried proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract as a potential functional ingredient: Improvement of stability, sensory aspects and technological properties. Food Hydrocolloids, 2018, 79, 343-351.	5.6	39
14	Protection of echium oil by microencapsulation with phenolic compounds. Food Research International, 2016, 88, 114-121.	2.9	38
15	Influence of the protein type on the stability of fish oil in water emulsion obtained by glass microfluidic device. Food Hydrocolloids, 2018, 77, 96-106.	5.6	38
16	Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International, 2020, 131, 109047.	2.9	33
17	Protection and controlled release of vitamin C by different micro/nanocarriers. Critical Reviews in Food Science and Nutrition, 2022, 62, 3301-3322.	5.4	31
18	Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers. Food Chemistry, 2018, 252, 277-284.	4.2	29

TALITA A COMUNIAN

#	Article	IF	CITATIONS
19	Reducing carotenoid loss during storage by co-encapsulation of pequi and buriti oils in oil-in-water emulsions followed by freeze-drying: Use of heated and unheated whey protein isolates as emulsifiers. Food Research International, 2020, 130, 108901.	2.9	29
20	Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Research International, 2020, 136, 109365.	2.9	27
21	Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. LWT - Food Science and Technology, 2017, 75, 251-260.	2.5	25
22	Physico-Chemical Properties, Stability, and Potential Food Applications of Shrimp Lipid Extract Encapsulated by Complex Coacervation. Food and Bioprocess Technology, 2018, 11, 1596-1604.	2.6	25
23	Microencapsulation of lactase by W/O/W emulsion followed by complex coacervation: Effects of enzyme source, addition of potassium and core to shell ratio on encapsulation efficiency, stability and kinetics of release. Food Research International, 2019, 121, 754-764.	2.9	22
24	Thermoresponsive, water-dispersible microcapsules with a lipid-polysaccharide shell to protect heat-sensitive colorants. Food Hydrocolloids, 2018, 81, 419-428.	5.6	20
25	Influence of heated, unheated whey protein isolate and its combination with modified starch on improvement of encapsulated pomegranate seed oil oxidative stability. Food Chemistry, 2020, 326, 126995.	4.2	20
26	Controlled droplet coalescence in miniemulsions to synthesize zinc oxide nanoparticles by precipitation. Chemical Engineering Science, 2013, 92, 126-133.	1.9	14
27	Microencapsulation as a tool to producing an extruded functional food. LWT - Food Science and Technology, 2020, 128, 109433.	2.5	13
28	Echium oil with oxidative stability increased by emulsion preparation in the presence of the phenolic compound sinapic acid followed by dehydration by spray and freeze drying processes. Journal of Food Science and Technology, 2019, 56, 1155-1164.	1.4	12
29	Effect of modified starches and gum arabic on the stability of carotenoids in paprika oleoresin microparticles. Drying Technology, 2021, 39, 1927-1940.	1.7	11
30	Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Critical Reviews in Food Science and Nutrition, 2022, 62, 6485-6504.	5.4	10
31	Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. Journal of Food Science and Technology, 2021, 58, 3765-3779.	1.4	7
32	Production of food bioactive-loaded nanostructures by micro-/nanofluidics. , 2019, , 213-250.		5
33	Barley Malt Esterification after Ultrasound and Stearic Acid Treatment: Characterization and Use as Stabilizing Agent in Oil-in-Water Emulsions. Food and Bioprocess Technology, 2021, 14, 310-323.	2.6	4
34	Physicochemical Properties of Capsicum Oleoresin Emulsions Stabilized by Gum Arabic, OSA-Modified Corn Starch, and Modified Malt. Food and Bioprocess Technology, 2022, 15, 474-485.	2.6	3
35	Application of nano/microencapsulated ingredients in oil/fat-based products. , 2021, , 387-434.		0
36	Effect of Incorporating Free or Encapsulated Ascorbic Acid in Chicken Frankfurters on Physicochemical and Sensory Stability. Journal of Food Science and Engineering, 2014, 4, .	0.1	0