
Konstantin Yu Zhizhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Derivatives of closo-decaborate anion [B10H10]2â^' with exo-polyhedral substituents. Russian Journal of Inorganic Chemistry, 2010, 55, 2089-2127.	0.3	121
2	Nucleophilicity of Oximes Based upon Addition to a Nitriliumcloso-Decaborate Cluster. Organometallics, 2016, 35, 3612-3623.	1.1	52
3	Mechanism of generation of closo-decaborato amidrazones. Intramolecular non-covalent B–Hâ√Ï€(Ph) interaction determines stabilization of the configuration around the amidrazone Cî€N bond. New Journal of Chemistry, 2018, 42, 8693-8703.	1.4	52
4	An interaction of the functionalized closo -borates with albumins: The protein fluorescence quenching and calorimetry study. Journal of Luminescence, 2016, 169, 51-60.	1.5	35
5	1,3-Dipolar Cycloaddition of Nitrones to a Nitrile Functionality in <i>closo</i> -Decaborate Clusters: A Novel Reactivity Mode for the Borylated C≡N Group. Organometallics, 2012, 31, 1716-1724.	1.1	34
6	Synthesis and reactivity of closo -decaborate anion derivatives with multiple carbon–oxygen bonds. Inorganic Chemistry Communication, 2014, 50, 28-30.	1.8	34
7	Structural Diversity of Cationic Copper(II) Complexes with Neutral Nitrogen-Containing Organic Ligands in Compounds with Boron Cluster Anions and Their Derivatives (Review). Russian Journal of Inorganic Chemistry, 2020, 65, 514-534.	0.3	32
8	Synthesis and Composition of Compounds Containing the B10H-11Anion. Inorganic Materials, 2004, 40, 144-146.	0.2	31
9	Reactions of nucleophilic addition of primary amines to the nitrilium derivative of the closo-decaborate anion [2-B10H9(N≡CCH3)]â^'. Russian Journal of Inorganic Chemistry, 2011, 56, 847-855.	0.3	31
10	Nickel(II) complexes with nitrogen-containing derivatives of the closo-decaborate anion. Russian Chemical Bulletin, 2014, 63, 187-193.	0.4	31
11	Borylated Tetrazoles from Cycloaddition of Azide Anions to Nitrilium Derivatives of <i>closo</i> -Decaborate Clusters. Organometallics, 2013, 32, 6576-6586.	1.1	30
12	The new approach to formation of exo boron–oxygen bonds from the decahydro-closo-decaborate(2-) anion. Polyhedron, 2015, 101, 215-222.	1.0	30
13	Complexation and exopolyhedral substitution of the terminal hydrogen atoms in the decahydro-closo-decaborate anion in the presence of cobalt(II). Polyhedron, 2019, 162, 65-70.	1.0	28
14	The method for synthesis of 2-sulfanyl closo -decaborate anion and its S -alkyl and S -acyl derivatives. Journal of Organometallic Chemistry, 2017, 828, 106-115.	0.8	27
15	Nucleophilic addition of alcohols to the C-N multiple bonds of the nitrilium substituent in the anion [2-B10H9(N≡CMe)]⒒. Russian Chemical Bulletin, 2009, 58, 1694-1700.	0.4	26
16	Coupling of Azomethine Ylides with Nitrilium Derivatives of <i>closo</i> â€Đecaborate Clusters: A Synthetic and Theoretical Study. ChemPlusChem, 2012, 77, 1075-1086.	1.3	25
17	[Co(solv)6][B10H10] (solv = DMF and DMSO) for low-temperature synthesis of borides. Russian Journal of Inorganic Chemistry, 2016, 61, 1125-1134.	0.3	25
18	Nucleophilic addition of alcohols to anionic [2-B10H9NCR]â^' (R = Et, t-Bu): An approach to producing new borvlated imidates. Polvhedron, 2017, 123, 176-183.	1.0	25

#	Article	IF	CITATIONS
19	Synthesis and stability studies of derivatives of the 2-sulfanyl-closo-decaborate anion [2-B10H9SH]2â^'. Inorganica Chimica Acta, 2018, 477, 277-283.	1.2	25
20	Crystal structures, luminescence, and DFT study of mixed-ligand Zn(II) and Cd(II) complexes with phenyl-containing benzimidazole derivatives with linker C N or N N group. Journal of Luminescence, 2021, 237, 118156.	1.5	25
21	Primary Amine Nucleophilic Addition to Nitrilium Closo-Dodecaborate [B12H11NCCH3]â^: A Simple and Effective Route to the New BNCT Drug Design. International Journal of Molecular Sciences, 2021, 22, 13391.	1.8	25
22	Synthesis of amino-containing meso-aryl-substituted porphyrins and their conjugates with the closo-decaborate anion. Russian Chemical Bulletin, 2014, 63, 194-200.	0.4	24
23	Interaction between a Decahydro-closo-Decaborate(2–) Anion and Aliphatic Carboxylic Acids. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 613-619.	0.3	23
24	The chemistry of the octahydrotriborate anion [B3H8]â^'. Russian Journal of Inorganic Chemistry, 2014, 59, 1539-1555.	0.3	22
25	<i>closo</i> -Dodecaborate Intercalated Yttrium Hydroxide as a First Example of Boron Cluster Anion-Containing Layered Inorganic Substances. Inorganic Chemistry, 2017, 56, 3421-3428.	1.9	22
26	Solvent-Induced Encapsulation of Cobalt(II) Ion by a Boron-Capped tris-Pyrazoloximate. Inorganic Chemistry, 2020, 59, 5845-5853.	1.9	22
27	Fused 1,2-Diboraoxazoles Based on closo-Decaborate Anion–Novel Members of Diboroheterocycle Class. Molecules, 2021, 26, 248.	1.7	22
28	Cobalt(II) and nickel(II) complexes with 1-methyl-2-pyridin-2-yl-1H- and 1-methyl-2-phenyliminomethyl-1H-benzimidazoles and the closo-decaborate anion. Russian Journal of Inorganic Chemistry, 2015, 60, 817-822.	0.3	21
29	Reactions of the [B10H10]2â^' anion with nucleophiles in the presence of halides of group IIIA and IVB elements. Russian Journal of Inorganic Chemistry, 2015, 60, 776-785.	0.3	21
30	Theoretical Study of closo-Borate Anions [BnHn]2â^' (n = 5–12): Bonding, Atomic Charges, and Reactivity Analysis. Symmetry, 2021, 13, 464.	1.1	21
31	Cleavage of the cyclic substituent in the [B10H9O2C4H8]â", [B10H9OC4H8]â", and [B10H9OC5H10]â [~] anions upon the interaction with negatively charged N-nucleophiles. Russian Journal of Inorganic Chemistry, 2011, 56, 1549-1554.	0.3	20
32	Iron(II) closo-borate complexes with 1,2,4-triazole derivatives: Spin crossover in the iron(II) closo-borate complexes with tris(pyrazol-1-yl)methane. Russian Journal of Inorganic Chemistry, 2013, 58, 650-656.	0.3	20
33	Nucleophilic addition of amino acid esters to nitrilium derivatives of closo-decaborate anion. Mendeleev Communications, 2021, 31, 201-203.	0.6	20
34	Synthesis of Nitrile Derivatives of the closo-Decaborate and closo-Dodecaborate Anions [BnHn – 1NCR]– (n = 10, 12) by a Microwave Method. Russian Journal of Inorganic Chemistry, 2021, 66, 139-145.	0.3	19
35	Zinc(II) and cadmium(II) complexes with the decahydro-closo-decaborate anion and phenyl-containing benzimidazole derivatives with linker N N or C N group. Polyhedron, 2021, 194, 114902.	1.0	18
36	Synthesis of New Bioinorganic Systems Based on Nitrilium Derivatives of closo-Decaborate Anion and meso-Arylporphyrins with Pendant Amino Groups. Macroheterocycles, 2017, 10, 505-509.	0.9	18

#	Article	IF	CITATIONS
37	Decahydro-closo-decaborate Anion B10H2–10as an Acido Lidand in Copper(I) Complexes. Doklady Chemistry, 2001, 378, 139-142.	0.2	17
38	Copper(I) coordination compounds with closo-dodecaborate anion. Russian Journal of Inorganic Chemistry, 2006, 51, 1723-1727.	0.3	17
39	Synthesis and magnetic properties of iron(II) closo-borate complexes with tris(3,5-dimethylpyrazol-1-yl)methane. Russian Journal of Inorganic Chemistry, 2015, 60, 786-789.	0.3	16
40	Phase equilibria involving solid solutions in the Li–Mn–O system. Russian Journal of Inorganic Chemistry, 2017, 62, 551-557.	0.3	16
41	Structural Diversity of Dimer Clusters Based on the Octadecahydro-Eicosaborate Anion. Journal of Structural Chemistry, 2019, 60, 692-712.	0.3	16
42	Nucleophilic Addition Reaction of Secondary Amines to Acetonitrilium closo-Decaborate [2-B10H9NCCH3]–. Russian Journal of Inorganic Chemistry, 2019, 64, 841-846.	0.3	16
43	New Synthesis Method of N-Monosubstituted Ammonium-closo-Decaborates. Journal of Cluster Science, 2019, 30, 1327-1333.	1.7	16
44	Synthesis of 1-Naphtylnitrilium closo-Decaborate and Amino Acid Conjugates and Their Photophysical Properties. Russian Journal of Inorganic Chemistry, 2019, 64, 1750-1752.	0.3	16
45	The method for synthesis of 2-sulfonium closo-decaborate anions derivatives with exo-polyhedral aminogroups. Inorganica Chimica Acta, 2020, 507, 119589.	1.2	16
46	Nickel(II) Complexes with Azaheterocyclic Ligands and 2-Hydroxy-closo-Decaborate Anion [2-B10H9OH]2–. Russian Journal of Inorganic Chemistry, 2021, 66, 187-192.	0.3	16
47	New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. Journal of Biological Inorganic Chemistry, 2022, 27, 421-429.	1.1	16
48	Positional isomers of mononuclear silver(I) anionic complex [Ag(Ph3P)2[B10H10â^'Cl]]â^' (x= 0 or 1) with apically and equatorially coordinated decahydrido-closo-decaborate and 2-chlorononahydrido-closo-decaborate ligands. Polyhedron, 2017, 123, 396-403.	1.0	15
49	Theoretical study of closo-borate derivatives of general type [BnHn-1COR]2– (nÂ=Â6, 10, 12; RÂ=ÂH, CH3,) Tj	ет _{од} 11 с).784314 rgE
50	N-Borylated Hydroxylamines [B12H11NH2OH]– as a Novel Type of Substituted Derivative of the closo-Dodecaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 795-799.	0.3	15
51	Synthesis, structures, DFT calculations, and Hirshfeld surface analysis of sulfonium derivatives of the closo-decaborate anion [B10X9-cyclo-S(CH2)4]– and [B10X9-cyclo-S(CH2CH2)2O]– (XÂ=ÂH, Cl, Br). Journal of Molecular Structure, 2021, 1241, 130591.	1.8	15
52	Push-pull alkenes bearing closo-decaborate cluster generated via nucleophilic addition of carbanions to borylated nitrilium salts. Inorganica Chimica Acta, 2018, 471, 372-376.	1.2	15
53	Reactions of the closo-dodecaborate anion B12H 12 2â^' with hydrogen halides in dichloroethane. Russian Journal of Inorganic Chemistry, 2007, 52, 52-57.	0.3	14
54	Nucleophilic substitution in closo-decaborate [B10H10]2â^' in the presence of carbocations. Russian Chemical Bulletin, 2010, 59, 550-555.	0.4	14

#	Article	IF	CITATIONS
55	A new method of synthesis of the B3H 8 â^' anion. Russian Journal of Inorganic Chemistry, 2012, 57, 471-473.	0.3	14

⁵⁶ Hydrolysis of nitrilium derivatives of the closo-decaborate anion [2-B10H9(Nâ‰;CR)]– (R = CH3, C2H5,) Tj ETQq0.0 0 rgBT/Overlock

57	New Methods for the Synthesis of Alkoxy Derivatives of the closo-Decaborate Anion [2-B10H9(OR)]2–, Where R = C2H5, iso-C3H7, Đ¡4H9. Russian Journal of Inorganic Chemistry, 2018, 63, 1546-1551.	0.3	14
58	Nucleophilic addition of hydrazine and benzophenone hydrazone to 2-acetonitrilium closo-decaborate cluster: Structural and photophysical study. Inorganica Chimica Acta, 2018, 482, 838-845.	1.2	14
59	Synthesis of Zn(II) porphyrin dyes and revealing an influence of their alkyl substituents on performance of dye-sensitized solar cells. Synthetic Metals, 2020, 269, 116567.	2.1	14
60	Perbrominated Sulfonium-Substituted closo-Decaborates with exo-Polyhedral Amino Groups [2-B10Br9S((CH2)nNH2)2]– (n = 1–3). Russian Journal of Inorganic Chemistry, 2020, 65, 1333-1342.	0.3	14
61	Theoretical study of monocarbonyl derivatives of closo-borate anions [B H–1CO]– (n= 6, 10, 12): bonding and reactivity analysis. Mendeleev Communications, 2020, 30, 88-90.	0.6	14
62	Reaction of the closo-decaborate anion B10H 10 2â^² with dichloroethane in the presence of hydrogen halides. Russian Journal of Inorganic Chemistry, 2007, 52, 996-1001.	0.3	13
63	Hydride compounds of zinc. Russian Journal of Inorganic Chemistry, 2014, 59, 1665-1678.	0.3	13
64	Reaction of the [B10H9O2C4H8]– anion with C-nucleophiles. Russian Journal of Inorganic Chemistry, 2017, 62, 808-813.	0.3	13
65	Synthesis of Boron-Containing Siloxanes by Reaction of Hydroxy-closo-Decaborates with Dihalosilanes. Russian Journal of Inorganic Chemistry, 2018, 63, 213-218.	0.3	13
66	Derivatives of closo-Decaborate Anion with Polyamines. Russian Journal of Inorganic Chemistry, 2019, 64, 977-983.	0.3	13
67	Compounds of Undecahydrodecaborate Anion B10H11–. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 622-624.	0.3	12
68	The Mechanism of Acid-Catalyzed Nucleophilic Substitution in Decahydro-closo-Decaborate(2–) Anions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 619-621.	0.3	12
69	Complexes of gold clusters with the closo-borate anions B10H 10 2â^ and B12H 12 2â^. Doklady Chemistry, 2007, 414, 137-139.	0.2	12
70	A new preparative method for the synthesis of oxonium derivatives of the decahydro-closo-decaborate anion. Russian Chemical Bulletin, 2010, 59, 371-373.	0.4	12
71	Oxonium derivatives of closo-decaborate in reactions with sulfur-containing nucleophiles. Russian Chemical Bulletin, 2010, 59, 556-559.	0.4	12
72	Reactions of sodium tetrahydroborate with alkyl and aryl halides: A new approach to the synthesis of B3H 8 â^' and B12H 12 2â^' anions. Russian Journal of Inorganic Chemistry, 2013, 58, 1321-1323.	0.3	12

#	Article	IF	CITATIONS
73	New methods of preparation of hydroxy-closo-decaborates [B10H10 â^' n (OH) n]2â^' (n = 1, 2). Russian Journal of Inorganic Chemistry, 2013, 58, 1395-1399.	0.3	12
74	Interaction of [В10H10]2– and [В12H12]2– with nitro compounds. Doklady Chemistry, 2017, 477, 257-26	00.2	12
75	Electrophilicity of aliphatic nitrilium closo -decaborate clusters: Hyperconjugation provides an unexpected inverse reactivity order. Journal of Organometallic Chemistry, 2018, 870, 97-103.	0.8	12
76	Boron Cluster Anions [B10X10]2– (X = H, Cl) in Manganese(II) Complexation with 2,2'-Bipyridyl. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 295-300.	0.3	12
77	Synthesis of Substituted Derivatives of closo-Decaborate Anion with a Peptide Bond: The Way towards Designing Biologically Active Boron-Containing Compounds. Russian Journal of Inorganic Chemistry, 2019, 64, 1499-1506.	0.3	12
78	High-Temperature Spin Crossover in Complexes of Iron(II) closo-Borates with 2,6-Bis(benzimidazol-2-yl)pyridine. Russian Journal of Inorganic Chemistry, 2020, 65, 1687-1694.	0.3	12
79	First example of the ribbed-functionalized iron(ii) clathrochelate with six pendante closo-borate substituents. Russian Chemical Bulletin, 2011, 60, 2518-2521.	0.4	11
80	New method for preparation of sulfanyl derivative of closo-decaborate anion [B10H9SH]2â^. Russian Journal of Inorganic Chemistry, 2015, 60, 198-202.	0.3	11
81	Effective binding of perhalogenated closo -borates to serum albumins revealed by spectroscopic and ITC studies. Journal of Molecular Structure, 2017, 1141, 75-80.	1.8	11
82	Synthesis and Physicochemical Properties of C-Borylated Esters Based on the closo-Decaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 1547-1551.	0.3	11
83	[Ź-B ₁₀ Cl ₉ SR ₂] ^{â⁻ⁱ} (R =) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 3 1.9	352 Td (<i>i< 11</i>
84	Structure of the undecahydrodecaborate anion B10H 11 â^' . Crystal structures of [Ph 3PCH2 Naph]B10H11 and [Ph 3PEt]2B10H10. Crystallography Reports, 2004, 49, 767-771.	0.1	10
85	Cage complexes as a molecular scaffold for polyfunctional and polytopic systems: Synthesis of the first closo-borate iron(II) clathrochelate. Russian Chemical Bulletin, 2006, 55, 22-25.	0.4	10
86	Crystal structure of tetraphenylphosphonium 2-{[(Z)-Hydroxy(phenyl)methylene]ammonio}nonahydro-closo-Decaborate: The intramolecular O-H···B3 hydrogen bond in the [B10H9NHC(OH)Ph]â^' anion. Crystallography Reports, 2007, 52, 271-274.	0.1	10
87	Mechanochemical synthesis of complex hydrides. Russian Journal of Inorganic Chemistry, 2012, 57, 1631-1652.	0.3	10
88	Nucleophilic addition of aromatic amide oximes to [2-B10H9NCC2H5]– anion. Russian Journal of General Chemistry, 2017, 87, 37-43.	0.3	10
89	Sulfonium closo-hydridodecaborate anions as active components of a potentiometric membrane sensor for lidocaine hydrochloride. Inorganica Chimica Acta, 2021, 514, 119992.	1.2	10
90	Electrochemical Properties of the closo-Decaborate Anion [B10H10]2– and a New Method for Preparation of the [B20H18]2– Anion. Russian Journal of Inorganic Chemistry, 2021, 66, 295-304.	0.3	10

Konstantin Yu Zhizhin

#	Article	IF	CITATIONS
91	Interaction of closo-decaborate anion B10H 10 2â^' with iminium salts. Russian Journal of Inorganic Chemistry, 2006, 51, 1552-1560.	0.3	9
92	Synthesis and Study of Derivatives of the [B10H10]2– Anion with Amino Acids. Russian Journal of Inorganic Chemistry, 2019, 64, 1513-1521.	0.3	9
93	Synthesis and properties of meso-arylporphyrin – closo-decaborate anion conjugates. Macroheterocycles, 2014, 7, 394-400.	0.9	9
94	Isothermal diagrams of the Li2O–MnO–MnO2 system. Doklady Chemistry, 2015, 465, 268-271.	0.2	8
95	A new method for the synthesis of carboxonium derivatives of the closo-decaborate anion [2,6-B10H8(O2CR)]–, where R = CH3, C2H5. Russian Journal of Inorganic Chemistry, 2017, 62, 1479-1482.	0.3	8
96	Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315, 435-441.	0.7	8
97	Methods of Creating closo-Decaborate Anion Derivatives with Bridging and Terminal Exopolyhedral Cyclic Substituents of Sulfonium Type. Doklady Chemistry, 2018, 483, 263-265.	0.2	8
98	Complex [Ag(PPh3)4][2-B10H9NH3 · 2DMF]: Synthesis and Structure. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 563-568.	0.3	8
99	Synthesis and Physicochemical Properties of C-Borylated Amides Based on the closo-Decaborate Anion. Russian Journal of Inorganic Chemistry, 2019, 64, 1405-1409.	0.3	8
100	Novel Cationic Meso-Arylporphyrins and Their Antiviral Activity against HSV-1. Pharmaceuticals, 2021, 14, 242.	1.7	8
101	B-F bonding and reactivity analysis of mono- and perfluoro-substituted derivatives of closo-borate anions (6, 10, 12): A computational study. Polyhedron, 2022, 211, 115559.	1.0	8
102	Protonation of Borylated Carboxonium Derivative [2,6-B10H8O2CCH3]â^': Theoretical and Experimental Investigation. International Journal of Molecular Sciences, 2022, 23, 4190.	1.8	8
103	Potentiometric sensors with membranes based on ionic liquid tetradecylammonium triethylammonio-closo-dodecaborate. Journal of Analytical Chemistry, 2012, 67, 168-171.	0.4	7
104	Phase states of Li(Na,K,Rb,Cs)/W/Mn/SiO2 composite catalysts for oxidative coupling of methane. Russian Journal of Inorganic Chemistry, 2016, 61, 1689-1707.	0.3	7
105	Selective synthesis of the [2-B10H9I]2â^' anion and some theoretical aspects of its iodination process. Polyhedron, 2018, 139, 125-130.	1.0	7
106	Polydentate ligands based on closo-decaborate anion for the synthesis of gadolinium(iii) complexes. Russian Chemical Bulletin, 2013, 62, 1417-1421.	0.4	6
107	QTAIM Analysis of Mono-Hydroxy Derivatives of closo-Borate Anions [BnHn– 1OH]2– (n = 6, 10, 12). Russian Journal of Inorganic Chemistry, 2019, 64, 1825-1828.	0.3	6
108	Silver(I) complexes with substituted derivatives of the boron cluster anions as ligands. Inorganica Chimica Acta, 2020, 510, 119749.	1.2	6

#	Article	IF	CITATIONS
109	Synthesis of carbocation salts of boron cluster anions [B10H10]2â^ and [B12H12]2â^. Russian Journal of Inorganic Chemistry, 2015, 60, 771-775.	0.3	5
110	Structure, physicochemical properties, and reactivity of the [B9H9]2– anion. Russian Journal of Inorganic Chemistry, 2016, 61, 1629-1648.	0.3	5
111	The Discovery of the Effect of <i>closo</i> â€Borate on Amyloid Fibril Formation. ChemistrySelect, 2017, 2, 10965-10970.	0.7	5
112	Synthesis of New Boron-Containing Ligands and Their Hafnium(IV) Complexes. Russian Journal of Inorganic Chemistry, 2020, 65, 839-845.	0.3	5
113	Theoretical and experimental comparison of the reactivity of the sulfanyl-closo-decaborate and sulfanyl-closo-dodecaborate anions and their mono-S-substituted derivatives. Polyhedron, 2021, 206, 115347.	1.0	5
114	Potentiometric quantitation of general local anesthetics with a new highly sensitive membrane sensor. Talanta, 2022, 241, 123239.	2.9	5
115	Nitrosation of Dodecahydro-closo-Dodecaborate Anions in Aqueous and Nonaqueous Solutions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 625-627.	0.3	4
116	Reaction of closo-dodecaborate anion B12H 12 2â^' with iminium salts. Russian Journal of Inorganic Chemistry, 2006, 51, 1716-1722.	0.3	4
117	Modern aspects of the chemistry of complex boron and aluminum hydrides. Russian Journal of Inorganic Chemistry, 2010, 55, 2128-2147.	0.3	4
118	Ion-selective electrodes for the determination of closoborate anions. Journal of Analytical Chemistry, 2011, 66, 666-669.	0.4	4
119	Tetrabutylammonium 2-[2,5-dimethyl-3-(4-nitrophenyl)-2,3-dihydro-1,2,4-oxadiazolium-4-yl]nonahydro-closo-decaborate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3284-o3285.	0.2	4
120	Ion Selective Potentiometric Sensor Based on Single Crystalline KTiOPO 4 for Determination of K + -ions. Procedia Engineering, 2016, 168, 440-443.	1.2	4
121	Preparation and Characterization of MgH2 Mechanocomposites with Mg2NiH0.3 + Mg2NiH4 – δ Two-Phase Mixture. Russian Journal of Inorganic Chemistry, 2018, 63, 1529-1533.	0.3	4
122	A tetradecylphosphonium compounds–based membrane sensor for potentiometric quantitation of pertechnetate-ions in cementitious radioactive waste. Sensors and Actuators B: Chemical, 2020, 310, 127853.	4.0	4
123	Diverse chemistry of the dianion [closo-B9H9]2â^': synthesis and reactivity of its mono-anionic derivative [arachno-B9H12-4,8-Cl2]â^'. New Journal of Chemistry, 2018, 42, 2553-2556.	1.4	3
124	Solid-State Synthesis of Lithium-Substituted Spinels Mg1–ÂxLixMnO3–Âδ. Russian Journal of Inorganic Chemistry, 2019, 64, 1482-1485.	0.3	3
125	An Ion Selective Electrode for the Determination of Pertechnetate Ions. Journal of Analytical Chemistry, 2020, 75, 829-834.	0.4	3
126	Synthesis of donor-ï€-acceptor porphyrins for DSSC: DFT-study, comparison of anchoring mode and effectiveness. Journal of Porphyrins and Phthalocyanines, 2020, 24, 538-547.	0.4	3

#	Article	IF	CITATIONS
127	Synthesis and Physicochemical Properties of C-Borylated Esters and Amides Based on the closo-Dodecaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 1637-1641.	0.3	3
128	Boron Cluster Anion [B12H12]2– in Zinc(II) and Cadmium(II) Complexation at the Presence of N-Donor Heterocyclic Ligands. Journal of Cluster Science, 2023, 34, 933-942.	1.7	3
129	A possibility of using mechanical alloying for developing metal matrix composites with light-weight reinforcements. Journal of Alloys and Compounds, 2007, 434-435, 451-454.	2.8	2
130	Hydride lithiation of spinels LiMn2O4. Doklady Chemistry, 2016, 471, 330-333.	0.2	2
131	Solid State Synthesis and Reversible Oxygen Capacity of Li/Mg Overstoichiometric Solid Solutions Based on the Spinel MgMnO3 – δ. Russian Journal of Inorganic Chemistry, 2019, 64, 1335-1341.	0.3	2
132	New Hybrid Polymer Membrane for Potentiometric Uranium-Selective Sensor. Doklady Chemistry, 2020, 491, 57-60.	0.2	2
133	Some Aspects Of Producing And Using Boron Compounds. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 449-456.	0.1	2
134	Hydrothermal Synthesis of Aqueous Sols of Nanocrystalline HfO2. Russian Journal of Inorganic Chemistry, 2020, 65, 800-804.	0.3	1
135	Nucleophilic Substitution Reactions in the [B3H8]â^' Anion in the Presence of Lewis Acids. Molecules, 2022, 27, 746.	1.7	1
136	<title>Neutron capture therapy of murine melanoma on new boron carriers with use of capillary neutron optics</title> . , 2005, 5943, 198.		0
137	Influence of chemical structure on acute toxicity of S-containing derivatives of boron clusters intended for neutron-capture therapy of malignant neoplasms. Pharmaceutical Chemistry Journal, 2012, 46, 536-539.	0.3	0

Nickel(II) and Iron(II) coordination compounds with octahydrotriborate($1\hat{a}\in$) anion [ML3]{B3H8}2 (M =) Tj ETQq0.0.0 rgBT Overlock 1

139	Hydride Intercalation of Lithium into the Spinel MgMnO3–Âδ. Russian Journal of Inorganic Chemistry, 2019, 64, 1205-1209.	0.3	0	
-----	---	-----	---	--