Jay W Hooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538060/publications.pdf

Version: 2024-02-01

74163 57758 6,356 98 44 75 citations h-index g-index papers 105 105 105 4694 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe. New England Journal of Medicine, 2016, 374, 1647-1660.	27.0	355
2	Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus. Nature Medicine, 2005, 11, 740-747.	30.7	346
3	A Recombinant Vesicular Stomatitis Virus Ebola Vaccine. New England Journal of Medicine, 2017, 376, 330-341.	27.0	314
4	Smallpox DNA Vaccine Protects Nonhuman Primates against Lethal Monkeypox. Journal of Virology, 2004, 78, 4433-4443.	3.4	267
5	The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infectious Diseases, The, 2015, 15, 1156-1166.	9.1	251
6	A Lethal Disease Model for Hantavirus Pulmonary Syndrome. Virology, 2001, 289, 6-14.	2.4	229
7	Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology, 2003, 306, 181-195.	2.4	205
8	Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight, 2020, 5, .	5.0	186
9	DNA Vaccination with Vaccinia Virus L1R and A33R Genes Protects Mice against a Lethal Poxvirus Challenge. Virology, 2000, 266, 329-339.	2.4	169
10	Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine, 2007, 25, 1814-1823.	3.8	153
11	Subunit Recombinant Vaccine Protects against Monkeypox. Journal of Immunology, 2006, 177, 2552-2564.	0.8	139
12	Active and Passive Vaccination against Hantavirus Pulmonary Syndrome with Andes Virus M Genome Segment-Based DNA Vaccine. Journal of Virology, 2003, 77, 9894-9905.	3.4	134
13	DNA Vaccination with the Hantaan Virus M Gene Protects Hamsters against Three of Four HFRS Hantaviruses and Elicits a High-Titer Neutralizing Antibody Response in Rhesus Monkeys. Journal of Virology, 2001, 75, 8469-8477.	3.4	127
14	Treatment of hantavirus pulmonary syndrome. Antiviral Research, 2008, 78, 162-169.	4.1	123
15	DNA Vaccination with Hantavirus M Segment Elicits Neutralizing Antibodies and Protects against Seoul Virus Infection. Virology, 1999, 255, 269-278.	2.4	122
16	Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine, 2006, 24, 4657-4666.	3.8	117
17	Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine, 2016, 34, 1927-1935.	3.8	106
18	Reovirus M2 gene is associated with chromium release from mouse L cells. Journal of Virology, 1993, 67, 5339-5345.	3.4	105

#	Article	IF	CITATIONS
19	Hemorrhagic Fever with Renal Syndrome Caused by 2 Lineages of Dobrava Hantavirus, Russia1. Emerging Infectious Diseases, 2008, 14, 617-625.	4.3	99
20	Progress on the Prevention and Treatment of Hantavirus Disease. Viruses, 2019, 11, 610.	3.3	89
21	Rescue of hantaan virus minigenomes. Virology, 2003, 306, 219-224.	2.4	85
22	Temporal Analysis of Andes Virus and Sin Nombre Virus Infections of Syrian Hamsters. Journal of Virology, 2007, 81, 7449-7462.	3.4	82
23	Comparison of the Protective Efficacy of Naked DNA, DNA-based Sindbis Replicon, and Packaged Sindbis Replicon Vectors Expressing Hantavirus Structural Genes in Hamsters. Virology, 1999, 263, 209-219.	2.4	77
24	T Cells Are Not Required for Pathogenesis in the Syrian Hamster Model of Hantavirus Pulmonary Syndrome. Journal of Virology, 2011, 85, 9929-9944.	3.4	76
25	Role of the mu 1 protein in reovirus stability and capacity to cause chromium release from host cells. Journal of Virology, 1996, 70, 459-467.	3.4	71
26	Hantaan/Andes virus DNA vaccine elicits a broadly cross-reactive neutralizing antibody response in nonhuman primates. Virology, 2006, 347, 208-216.	2.4	68
27	Assessing the safety and immunogenicity of recombinant vesicular stomatitis virus Ebola vaccine in healthy adults: a randomized clinical trial. Cmaj, 2017, 189, E819-E827.	2.0	67
28	A Hantavirus Pulmonary Syndrome (HPS) DNA Vaccine Delivered Using a Spring-powered Jet Injector Elicits a Potent Neutralizing Antibody Response in Rabbits and Nonhuman Primates. Current Gene Therapy, 2014, 14, 200-210.	2.0	64
29	A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PLoS ONE, 2018, 13, e0192312.	2.5	64
30	Immune Serum Produced by DNA Vaccination Protects Hamsters against Lethal Respiratory Challenge with Andes Virus. Journal of Virology, 2008, 82, 1332-1338.	3.4	62
31	Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine, 2009, 28, 494-511.	3.8	61
32	The Syrian hamster model of hantavirus pulmonary syndrome. Antiviral Research, 2012, 95, 282-292.	4.1	61
33	Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Human Vaccines and Immunotherapeutics, 2015, 11, 1991-2004.	3.3	61
34	DNA vaccine–derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome. Science Translational Medicine, 2014, 6, 264ra162.	12.4	59
35	A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine, 2012, 30, 1951-1958.	3.8	58
36	A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for haemorrhagic fever with renal syndrome delivered by intramuscular electroporation. Clinical Microbiology and Infection, 2014, 20, 110-117.	6.0	58

#	Article	IF	CITATIONS
37	Disruption of Adaptive Immunity Enhances Disease in SARS-CoV-2-Infected Syrian Hamsters. Journal of Virology, 2020, 94, .	3.4	58
38	A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Vaccine, 2013, 31, 4314-4321.	3.8	57
39	Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial. PLoS Medicine, 2017, 14, e1002402.	8.4	57
40	Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS ONE, 2021, 16, e0246366.	2.5	52
41	Preclinical Development of Inactivated Rabies Virus–Based Polyvalent Vaccine Against Rabies and Filoviruses. Journal of Infectious Diseases, 2015, 212, S414-S424.	4.0	49
42	Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein. Virology, 2007, 368, 331-341.	2.4	47
43	A Lethal Disease Model for Hantavirus Pulmonary Syndrome in Immunosuppressed Syrian Hamsters Infected with Sin Nombre Virus. Journal of Virology, 2014, 88, 811-819.	3.4	46
44	Vaccines against hantaviruses. Expert Review of Vaccines, 2002, 1, 373-384.	4.4	45
45	DNA Vaccine-Generated Duck Polyclonal Antibodies as a Postexposure Prophylactic to Prevent Hantavirus Pulmonary Syndrome (HPS). PLoS ONE, 2012, 7, e35996.	2.5	45
46	A highly specific monoclonal antibody against monkeypox virus detects the heparin binding domain of A27. Virology, 2014, 464-465, 264-273.	2.4	42
47	Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters. Npj Vaccines, 2021, 6, 16.	6.0	41
48	Study of Andes virus entry and neutralization using a pseudovirion system. Journal of Virological Methods, 2010, 163, 416-423.	2.1	40
49	Human T-Cell Responses to Vaccinia Virus Envelope Proteins. Journal of Virology, 2006, 80, 10010-10020.	3.4	39
50	Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure. PLoS Neglected Tropical Diseases, 2015, 9, e0003803.	3.0	39
51	Intranasal monkeypox marmoset model: Prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLoS Neglected Tropical Diseases, 2018, 12, e0006581.	3.0	39
52	Randomized, Blinded, Dose-Ranging Trial of an Ebola Virus Glycoprotein Nanoparticle Vaccine With Matrix-M Adjuvant in Healthy Adults. Journal of Infectious Diseases, 2020, 222, 572-582.	4.0	38
53	Construction and Nonclinical Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine. Vaccine Journal, 2013, 20, 218-226.	3.1	37
54	Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates. PLoS ONE, 2012, 7, e42353.	2.5	36

#	Article	IF	CITATIONS
55	Andes virus M genome segment is not sufficient to confer the virulence associated with Andes virus in Syrian hamsters. Virology, 2004, 326, 130-139.	2.4	35
56	Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology, 2008, 377, 19-29.	2.4	35
57	Ribavirin Protects Syrian Hamsters against Lethal Hantavirus Pulmonary Syndrome — After Intranasal Exposure to Andes Virus. Viruses, 2013, 5, 2704-2720.	3.3	35
58	Production of Potent Fully Human Polyclonal Antibodies against Ebola Zaire Virus in Transchromosomal Cattle. Scientific Reports, 2016, 6, 24897.	3.3	35
59	Gastrointestinal Tract As Entry Route for Hantavirus Infection. Frontiers in Microbiology, 2017, 8, 1721.	3.5	35
60	Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine, 2008, 26, 3507-3515.	3.8	32
61	Lipid Nanoparticle Formulation Increases Efficiency of DNA-Vectored Vaccines/Immunoprophylaxis in Animals Including Transchromosomic Bovines. Scientific Reports, 2020, 10, 8764.	3.3	32
62	Characterization of Ebola convalescent plasma donor immune response and psoralen treated plasma in the United States. Transfusion, 2020, 60, 1024-1031.	1.6	32
63	A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. Journal of Virology, 2022, 96, JVI0150421.	3.4	31
64	Mixing of M segment DNA vaccines to Hantaan virus and Puumala virus reduces their immunogenicity in hamsters. Vaccine, 2008, 26, 5177-5181.	3.8	29
65	Efficient production of Hantaan and Puumala pseudovirions for viral tropism and neutralization studies. Virology, 2012, 423, 134-142.	2.4	27
66	DNA vaccines for HFRS: Laboratory and clinical studies. Virus Research, 2014, 187, 91-96.	2.2	27
67	Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses. PLoS ONE, 2015, 10, e0137786.	2.5	24
68	Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. Virology Journal, 2011, 8, 441.	3.4	23
69	Human polyclonal antibodies produced in transchromosomal cattle prevent lethal Zika virus infection and testicular atrophy in mice. Antiviral Research, 2017, 146, 164-173.	4.1	22
70	Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever. Journal of Virology, 2016, 90, 3515-3529.	3.4	21
71	An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection. Scientific Reports, 2017, 7, 4679.	3.3	21
72	Anti-HFRS Human IgG Produced in Transchromosomic Bovines Has Potent Hantavirus Neutralizing Activity and Is Protective in Animal Models. Frontiers in Microbiology, 2020, 11, 832.	3.5	21

#	Article	IF	CITATIONS
73	Cross-Protection Conferred by Filovirus Virus-Like Particles Containing Trimeric Hybrid Glycoprotein. Viral Immunology, 2015, 28, 62-70.	1.3	20
74	Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate. Journal of Infectious Diseases, 2018, 218, S636-S648.	4.0	19
75	A Phase 2a Randomized, Double-Blind, Dose-Optimizing Study to Evaluate the Immunogenicity and Safety of a Bivalent DNA Vaccine for Hemorrhagic Fever with Renal Syndrome Delivered by Intramuscular Electroporation. Vaccines, 2020, 8, 377.	4.4	19
76	The strategic use of novel smallpox vaccines in the post-eradication world. Expert Review of Vaccines, 2011, 10, 1021-1035.	4.4	18
77	Broad and potently neutralizing monoclonal antibodies isolated from human survivors of New World hantavirus infection. Cell Reports, 2021, 35, 109086.	6.4	18
78	Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease following Exposure to SARS-CoV-2. MBio, 2022, 13, e0290621.	4.1	17
79	Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Molecular Therapy - Nucleic Acids, 2022, 28, 847-858.	5.1	17
80	Particle-specific neutralizing activity of a monoclonal antibody targeting the poxvirus A33 protein reveals differences between cell associated and extracellular enveloped virions. Virology, 2020, 544, 42-54.	2.4	16
81	A SARS-CoV-2 Spike Ferritin Nanoparticle Vaccine Is Protective and Promotes a Strong Immunological Response in the Cynomolgus Macaque Coronavirus Disease 2019 (COVID-19) Model. Vaccines, 2022, 10, 717.	4.4	15
82	Three asymptomatic animal infection models of hemorrhagic fever with renal syndrome caused by hantaviruses. PLoS ONE, 2019, 14, e0216700.	2.5	14
83	Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs, 2022, 14, 2002236.	5.2	14
84	A lethal disease model for New World hantaviruses using immunosuppressed Syrian hamsters. PLoS Neglected Tropical Diseases, 2017, 11, e0006042.	3.0	13
85	The M2 Gene Segment Is Involved in the Capacity of Reovirus Type 3 Abney to Induce the Oily Fur Syndrome in Neonatal Mice, a S1 Gene Segment-Associated Phenotype. Virology, 2003, 305, 25-30.	2.4	12
86	Development and application of a flow cytometric potency assay for DNA vaccines. Vaccine, 2011, 29, 6728-6735.	3.8	12
87	Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters. Journal of Virology, 2016, 90, 6200-6215.	3.4	11
88	Exposure Route Influences Disease Severity in the COVID-19 Cynomolgus Macaque Model. Viruses, 2022, 14, 1013.	3.3	10
89	A DNA vaccine targeting VEE virus delivered by needle-free jet-injection protects macaques against aerosol challenge. Npj Vaccines, 2022, 7, 46.	6.0	9
90	Evaluating the Orthopoxvirus Type I Interferon-Binding Molecule as a Vaccine Target in the Vaccinia Virus Intranasal Murine Challenge Model. Vaccine Journal, 2010, 17, 1656-1665.	3.1	8

#	Article	IF	CITATION
91	Small animal jet injection technique results in enhanced immunogenicity of hantavirus DNA vaccines. Vaccine, 2021, 39, 1101-1110.	3.8	8
92	Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters. Viruses, 2019, 11, 92.	3.3	7
93	Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease. Journal of General Virology, 2021, 102, .	2.9	6
94	Innate immune responses elicited by Sin Nombre virus or type I IFN agonists protect hamsters from lethal Andes virus infections. Journal of General Virology, 2018, 99, 1359-1366.	2.9	5
95	Hantavirus. , 2009, , 379-411.		4
96	Comparison of transcriptional responses between pathogenic and nonpathogenic hantavirus infections in Syrian hamsters using NanoString. PLoS Neglected Tropical Diseases, 2021, 15, e0009592.	3.0	4
97	SARS-CoV-2 Doggybone DNA Vaccine Produces Cross-Variant Neutralizing Antibodies and Is Protective in a COVID-19 Animal Model. Vaccines, 2022, 10, 1104.	4.4	4
98	Comparison of VSV Pseudovirus and Focus Reduction Neutralization Assays for Measurement of Anti-Andes orthohantavirus Neutralizing Antibodies in Patient Samples. Frontiers in Cellular and Infection Microbiology, 2020, 10, 444.	3.9	3