Hajjaj H M Abdu-Allah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAFV600E dual inhibitors. Bioorganic Chemistry, 2020, 104, 104260.	2.0	50
2	Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorganic Chemistry, 2018, 80, 461-471.	2.0	49
3	Further insight into the dual COX-2 and 15-LOX anti-inflammatory activity of 1,3,4-thiadiazole-thiazolidinone hybrids: The contribution of the substituents at 5th positions is size dependent. Bioorganic Chemistry, 2020, 97, 103657.	2.0	39
4	CD22-Antagonists with nanomolar potency: The synergistic effect of hydrophobic groups at C-2 and C-9 of sialic acid scaffold. Bioorganic and Medicinal Chemistry, 2011, 19, 1966-1971.	1.4	37
5	Click chemistry synthesis, biological evaluation and docking study of some novel 2′-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorganic Chemistry, 2020, 95, 103505.	2.0	37
6	Design, Synthesis, and Structureâ^'Affinity Relationships of Novel Series of Sialosides as CD22-Specific Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 6665-6681.	2.9	31
7	Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types. Investigational New Drugs, 2019, 37, 252-261.	1.2	27
8	Proximity labeling of cis-ligands of CD22/Siglec-2 reveals stepwise α2,6 sialic acid-dependent and -independent interactions. Biochemical and Biophysical Research Communications, 2018, 495, 854-859.	1.0	26
9	CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice. Frontiers in Immunology, 2018, 9, 820.	2.2	25
10	5-Aminosalyclic Acid (5-ASA): A Unique Anti-Inflammatory Salicylate. , 2016, 06, .		23
11	Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharmaceutica, 2016, 66, 219-231.	0.9	21
12	Design and synthesis of novel 5-aminosalicylate (5-ASA)–4-thiazolinone hybrid derivatives with promising antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1647-1650.	1.0	20
13	Synthesis and anti-inflammatory testing of some new compounds incorporating 5-aminosalicylic acid (5-ASA) as potential prodrugs. Archives of Pharmacal Research, 2005, 28, 637-647.	2.7	19
14	Potent small molecule mouse CD22-inhibitors: Exploring the interaction of the residue at C-2 of sialic acid scaffold. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5573-5575.	1.0	19
15	Novel N-substituted 5-aminosalicylamides as dual inhibitors of cyclooxygenase and 5-lipoxygenase enzymes: Synthesis, biological evaluation and docking study. Bioorganic Chemistry, 2018, 78, 80-93.	2.0	18
16	Synthesis and anti-mycobacterial activity of 4-(4-phenyl-1H-1,2,3-triazol-1-yl)salicylhydrazones: revitalizing an old drug. Archives of Pharmacal Research, 2017, 40, 168-179.	2.7	15
17	Conjugation of 4-aminosalicylate with thiazolinones afforded non-cytotoxic potent in vitro and in vivo anti-inflammatory hybrids. Bioorganic Chemistry, 2020, 94, 103378.	2.0	14
18	Induction of DNA damage, apoptosis and cell cycle perturbation mediate cytotoxic activity of new 5-aminosalicylate–4-thiazolinone hybrid derivatives. Biomedicine and Pharmacotherapy, 2020, 131, 110571.	2.5	11

Hajjaj H M Abdu-Allah

#	Article	IF	CITATIONS
19	Bis-(5-substituted-2-thiono-1,3,5-thiadiazinan-3-yl) butane as a scaffold of anti-proliferative activity, blended by a multicomponent process. Medicinal Chemistry Research, 2018, 27, 1103-1110.	1.1	10
20	Synthesis of biotinylated sialoside to probe CD22–ligand interactions. Tetrahedron Letters, 2009, 50, 4488-4491.	0.7	9
21	The Protein Tyrosine Phosphatase SHP-1 (PTPN6) but Not CD45 (PTPRC) Is Essential for the Ligand-Mediated Regulation of CD22 in BCR-Ligated B Cells. Journal of Immunology, 2021, 206, 2544-2551.	0.4	9
22	Synthesis of B- and C-ring-modified lithocholic acid analogues as potential sialyltransferase inhibitors. Steroids, 2016, 112, 54-61.	0.8	8
23	The inhibitory coreceptor CD22 restores B cell signaling by developmentally regulating <i> Cd45 ^{â^'/â^'} </i> immunodeficient B cells. Science Signaling, 2022, 15, eabf9570.	1.6	6
24	Ionic liquid of ketoprofen-piperine modulates the pharmaceutical and therapeutic characters of ketoprofen. International Journal of Pharmaceutics, 2022, 620, 121724.	2.6	6
25	Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. European Journal of Medicinal Chemistry, 2020, 208, 112707.	2.6	5
26	Synthesis, characterization, and photophysical properties of some new thieno[2,3â€ <i>b</i>]pyridines bearing phenylethenyl moiety. Journal of Heterocyclic Chemistry, 2022, 59, 359-370.	1.4	5
27	Design and Synthesis of a Multivalent Heterobifunctional CD22 Ligand as a Potential Immunomodulator. Synthesis, 2011, 2011, 2968-2974.	1.2	4
28	Crystal structure of methyl 2-hydroxy-5-[(4-oxo-4,5-dihydro-1,3-thiazol-2-yl)amino]benzoate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o282-o283.	0.2	3
29	Synthesis and characterization of some new pyridines, thieno[2,3―b] pyridines and pyrido[3′,2′:4,5]thieno[3,2―d]pyrimidineâ€4(3 H)â€ones bearing styryl moiety. Journal of Heterocyclic Chemistry, 2020, 57, 2379-2388.	1.4	3
30	Stereoselective trimethylsilylation of \hat{I}_{\pm} - and \hat{I}_{\pm} -galactopyranoses. Carbohydrate Research, 2019, 474, 51-56.	1.1	1
31	Synthesis and characterization of some new S-substituted sulfanylpyridines, thieno[2,3-b]pyridines and related heterocycles. Arkivoc, 2021, 2020, 46-57.	0.3	1
32	Nature-inspired design of tetraindoles: Optimization of the core structure and evaluation of structure–activity relationship. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4497-4503.	1.0	0
33	5-aminosalicylate–4-thiazolinone hybrid derivatives: A potent modulator of DNA damage response and G2/M cell cycle arrest via ATM/ATR pathway and Cyclin-CDK complex. , 0, , .		0
34	Crystal structure of 3-methyl-1-phenyl-6-propylamino-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0766-0767.	0.2	0
35	Crystal structure and Hirshfeld surface analysis of 5-acetyl-3-amino-6-methyl- <i>N</i> -phenyl-4-[(<i>E</i>)-2-phenylethenyl]thieno[2,3- <i>b</i>]pyridine-2-carboxan Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 225-230.	nide2	0