Amy K Reeve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537656/publications.pdf

Version: 2024-02-01

26 papers 3,797 citations

394421 19 h-index 26 g-index

27 all docs

27 docs citations

27 times ranked

5340 citing authors

#	Article	IF	CITATIONS
1	Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson's Disease. Movement Disorders, 2022, 37, 302-314.	3.9	14
2	Hippocampal network hyperexcitability in young transgenic mice expressing human mutant alpha-synuclein. Neurobiology of Disease, 2021, 149, 105226.	4.4	10
3	lmaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 39.	5.3	17
4	3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Reports, 2021, 36, 109509.	6.4	52
5	Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissues. Neurobiology of Disease, 2020, 134, 104631.	4.4	33
6	Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 103.	5.2	10
7	The rise and rise of mitochondrial DNA mutations. Open Biology, 2020, 10, 200061.	3.6	89
8	Understanding mitochondrial DNA maintenance disorders at the single muscle fibre level. Nucleic Acids Research, 2019, 47, 7430-7443.	14.5	16
9	Mitochondrial Dysfunction in Parkinson's Diseaseâ€"Cause or Consequence?. Biology, 2019, 8, 38.	2.8	153
10	Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 9.	5.3	92
11	Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Scientific Reports, 2018, 8, 1799.	3.3	30
12	Impaired Fast Network Oscillations and Mitochondrial Dysfunction in a Mouse Model of Alpha-synucleinopathy (A30P). Neuroscience, 2018, 377, 161-173.	2.3	12
13	Subcellular origin of mitochondrial DNA deletions in human skeletal muscle. Annals of Neurology, 2018, 84, 289-301.	5.3	47
14	Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Research, 2016, 44, 5313-5329.	14.5	37
15	Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?. Ageing Research Reviews, 2014, 14, 19-30.	10.9	681
16	Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue. Journal of Neuroscience Methods, 2014, 232, 143-149.	2.5	28
17	The Impact of Pathogenic Mitochondrial DNA Mutations on Substantia Nigra Neurons. Journal of Neuroscience, 2013, 33, 10790-10801.	3.6	75
18	No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1858-1866.	3.0	13

ΑΜΥ Κ REEVE

#	Article	IF	CITATION
19	Relationship Between Mitochondria and α-Synuclein. Archives of Neurology, 2012, 69, 385.	4.5	43
20	Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology, 2011, 69, 481-492.	5.3	306
21	The low abundance of clonally expanded mitochondrial DNA point mutations in aged substantia nigra neurons. Aging Cell, 2009, 8, 496-498.	6.7	26
22	Age related mitochondrial degenerative disorders in humans. Biotechnology Journal, 2008, 3, 750-756.	3.5	59
23	Mitochondrial DNA Mutations in Disease, Aging, and Neurodegeneration. Annals of the New York Academy of Sciences, 2008, 1147, 21-29.	3.8	129
24	What causes mitochondrial DNA deletions in human cells?. Nature Genetics, 2008, 40, 275-279.	21.4	334
25	Nature of Mitochondrial DNA Deletions in Substantia Nigra Neurons. American Journal of Human Genetics, 2008, 82, 228-235.	6.2	123
26	High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 2006, 38, 515-517.	21.4	1,363