
Seung-Min Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets. Nano Letters, 2009, 9, 44-49.	4.5	371
2	Influence of Alumina Type on the Evolution and Activity of Alumina-Supported Fe Catalysts in Single-Walled Carbon Nanotube Carpet Growth. ACS Nano, 2010, 4, 895-904.	7.3	201
3	Evolution in Catalyst Morphology Leads to Carbon Nanotube Growth Termination. Journal of Physical Chemistry Letters, 2010, 1, 918-922.	2.1	177
4	Direct spinning and densification method for high-performance carbon nanotube fibers. Nature Communications, 2019, 10, 2962.	5.8	126
5	A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Research, 2017, 10, 1861-1871.	5.8	102
6	Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst. Green Chemistry, 2017, 19, 2482-2490.	4.6	97
7	A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. Journal of Power Sources, 2016, 309, 202-211.	4.0	89
8	High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon, 2017, 118, 413-421.	5.4	83
9	Investigating the Reversibility of Structural Modifications of Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1–<i>y</i>–<i>z</i>} O Cathode Materials during Initial Charge/Discharge, at Multiple Length Scales. Chemistry of Materials, 2015, 27, 6044-6052.	_{2<!--</td--><td>sub> 80</td>}	sub> 80
10	Highly-efficient and magnetically-separable ZnO/Co@N-CNTs catalyst for hydrodeoxygenation of lignin and its derived species under mild conditions. Green Chemistry, 2019, 21, 1021-1042.	4.6	72
11	Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol. Green Chemistry, 2017, 19, 1969-1982.	4.6	62
12	Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals. Green Chemistry, 2018, 20, 3253-3270.	4.6	60
13	Improving the Stability of High-Performance Multilayer MoS ₂ Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 42943-42950.	4.0	59
14	One-pot di- and polysaccharides conversion to highly selective 2,5-dimethylfuran over Cu-Pd/Amino-functionalized Zr-based metal-organic framework (UiO-66(NH2))@SGO tandem catalyst. Applied Catalysis B: Environmental, 2019, 243, 337-354.	10.8	58
15	Highly flexible and stretchable thermally conductive composite film by polyurethane supported 3D networks of boron nitride. Composites Science and Technology, 2017, 152, 94-100.	3.8	56
16	Hydrogen-Enriched Reduced Graphene Oxide with Enhanced Electrochemical Performance in Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 266-275.	3.2	53
17	Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity. Carbon, 2021, 173, 901-909.	5.4	52
18	Mechanically enhanced graphene oxide/carboxymethyl cellulose nanofibril composite fiber as a scalable adsorbent for heavy metal removal. Carbohydrate Polymers, 2020, 240, 116348	5.1	50

Seung-Min Kim

#	Article	IF	CITATIONS
19	Interstitial Moâ€Assisted Photovoltaic Effect in Multilayer MoSe ₂ Phototransistors. Advanced Materials, 2018, 30, e1705542.	11.1	48
20	High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale, 2016, 8, 18972-18979.	2.8	46
21	Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers. Materials Letters, 2015, 156, 17-20.	1.3	42
22	One-pot direct conversion of levulinic acid into high-yield valeric acid over a highly stable bimetallic Nb-Cu/Zr-doped porous silica catalyst. Green Chemistry, 2020, 22, 766-787.	4.6	39
23	Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into Highâ€Performance Fibers. Small, 2017, 13, 1701131.	5.2	38
24	Synthesis and lithium storage properties of MoS 2 nanoparticles prepared using supercritical ethanol. Chemical Engineering Journal, 2016, 285, 517-527.	6.6	33
25	Mechanical and electrical properties of thermochemically cross-linked polymer carbon nanotube fibers. Composites Part A: Applied Science and Manufacturing, 2016, 91, 222-228.	3.8	31
26	A facile method for transparent carbon nanosheets heater based on polyimide. RSC Advances, 2016, 6, 52509-52517.	1.7	30
27	Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals. Carbohydrate Polymers, 2020, 228, 115424.	5.1	29
28	Structural Evolution of Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1-y-z} O ₂ Cathode Materials during High-Rate Charge and Discharge. Journal of Physical Chemistry Letters, 2017, 8, 5758-5763.	2.1	27
29	Different thermal degradation mechanisms: Role of aluminum in Ni-rich layered cathode materials. Nano Energy, 2020, 78, 105367.	8.2	27
30	A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires. Chemistry of Materials, 2020, 32, 2753-2763.	3.2	27
31	Accurate measurement of specific tensile strength of carbon nanotube fibers with hierarchical structures by vibroscopic method. RSC Advances, 2017, 7, 8575-8580.	1.7	26
32	Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-materials. Carbon, 2019, 152, 151-158.	5.4	25
33	Metal nanofibrils embedded in long free-standing carbon nanotube fibers with a high critical current density. NPG Asia Materials, 2018, 10, 146-155.	3.8	23
34	A seed-mediated growth of gold nanoparticles inside carbon nanotube fibers for fabrication of multifunctional nanohybrid fibers with enhanced mechanical and electrical properties. Nanoscale, 2019, 11, 5295-5303.	2.8	23
35	Photoacoustic effect on the electrical and mechanical properties of polymer-infiltrated carbon nanotube fiber/graphene oxide composites. Composites Science and Technology, 2017, 153, 136-144.	3.8	21
36	Synthesis, property, and application of carbon nanotube fiber. Journal of the Korean Ceramic Society, 2021, 58, 148-159.	1.1	20

SEUNG-MIN KIM

#	Article	IF	CITATIONS
37	Fabrication of sustainable and multifunctional TiO2@carbon nanotube nanocomposite fibers. Applied Surface Science, 2021, 541, 148332.	3.1	19
38	The influence of boundary layer on the growth kinetics of carbon nanotube forests. Carbon, 2015, 93, 217-225.	5.4	18
39	Purification effect of carbon nanotube fibers on their surface modification to develop a high-performance and multifunctional nanocomposite fiber. Carbon, 2021, 173, 376-383.	5.4	17
40	Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li _{<i>x</i>} Ni _{0.835} Co _{0.15} Al _{0.015} O ₂ Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie - International Edition, 2020, 59, 2385-2391.	7.2	16
41	Improving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process. Carbon, 2021, 172, 733-741.	5.4	16
42	Strong and Highly Conductive Carbon Nanotube Fibers as Conducting Wires for Wearable Electronics. ACS Applied Nano Materials, 2021, 4, 3833-3842.	2.4	16
43	Ultrastrong Anchoring on the Periodic Atomic Grooves of Black Phosphorus. Advanced Materials Interfaces, 2016, 3, 1600534.	1.9	14
44	Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination. Nanoscale, 2016, 8, 2055-2062.	2.8	14
45	Simultaneous enhancement of mechanical and electrical properties of carbon nanotube fiber by infiltration and subsequent carbonization of resorcinol-formaldehyde resin. Composites Part B: Engineering, 2019, 163, 431-437.	5.9	14
46	High-crystallinity single-walled carbon nanotube aerogel growth: Understanding the real-time catalytic decomposition reaction through floating catalyst chemical vapor deposition. Chemical Engineering Journal Advances, 2022, 10, 100261.	2.4	14
47	Effects of nitrogen doping from pyrolyzed ionic liquid in carbon nanotube fibers: enhanced mechanical and electrical properties. Nanotechnology, 2015, 26, 075706.	1.3	13
48	Rationally designed catalyst layers toward "immortal―growth of carbon nanotube forests: Fe-ion implanted substrates. Carbon, 2019, 152, 482-488.	5.4	13
49	Multifunctionalized Reduced Graphene Oxide Biosensors for Simultaneous Monitoring of Structural Changes in Amyloid-β 40. Sensors, 2018, 18, 1738.	2.1	12
50	Bio-inspired incorporation of functionalized graphene oxide into carbon nanotube fibers for their efficient mechanical reinforcement. Composites Science and Technology, 2019, 181, 107680.	3.8	10
51	One-pot, cascade conversion of cellulose to γ-valerolactone over a multifunctional Ru–Cu/zeolite-Y catalyst in supercritical methanol. Applied Catalysis B: Environmental, 2022, 314, 121466.	10.8	10
52	Evolution of implanted Fe ions in SiO2/Si wafer into uniformly sized catalyst particles for carbon nanotube forest growth. Carbon, 2017, 123, 122-128.	5.4	9
53	Effects of a SiO ₂ sub-supporting layer on the structure of a Al ₂ O ₃ supporting layer, formation of Fe catalyst particles, and growth of carbon nanotube forests. RSC Advances, 2016, 6, 68424-68432.	1.7	8
54	CNT bundle-based thin intracochlear electrode array. Biomedical Microdevices, 2019, 21, 27.	1.4	6

SEUNG-MIN KIM

#	Article	IF	CITATIONS
55	Continuous synthesis of high-crystalline carbon nanotubes by controlling the configuration of the injection part in the floating catalyst chemical vapor deposition process. Carbon Letters, 2020, 30, 613-619.	3.3	6
56	Influence of the Sulfur Content Catalyst on the Packing Density of Carbon Nanotube Forests. Nanomaterials, 2019, 9, 889.	1.9	4
57	Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li x Ni 0.835 Co 0.15 Al 0.015 O 2 Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie, 2020, 132, 2406-2412.	1.6	4
58	Using In-Situ Methods to Characterize Phase Changes in Charged Lithium Nickel Cobalt Aluminum Oxide Cathode Materials. Microscopy and Microanalysis, 2019, 25, 2030-2031.	0.2	2
59	High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition. Nanomaterials, 2022, 12, 863.	1.9	2
60	Reply to Comment on "A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires― Chemistry of Materials, 2021, 33, 3862-3864.	3.2	1
61	Frontispiece: Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li _{<i>x</i>} Ni _{0.835} Co _{0.15} Al _{0.015} O ₂ Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie - International Edition, 2020, 59.	7.2	0
62	Frontispiz: Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li _{<i>x</i>} Ni _{0.835} Co _{0.15} Al _{0.015} O ₂ Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie, 2020, 132, .	1.6	0